Skip to main content
Log in

VEGF165 Therapy Exacerbates Secondary Damage Following Spinal Cord Injury

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF) demonstrates potent and well-characterized effects on endothelial cytoprotection and angiogenesis. In an attempt to preserve spinal microvasculature and prolong the endogenous neovascular response observed transiently following experimental spinal cord injury (SCI), exogenous recombinant human VEGF (rhVEGF165) was injected into the injured rat spinal cord. Adult female Fischer 344 rats were subjected to moderate SCI (12.5 g-cm) using the NYU impactor. At 72 h after injury, animals were randomly assigned to three experimental groups receiving no microinjection or injection of saline or saline containing 2 μg of rhVEGF165. Acutely, VEGF injection resulted in significant microvascular permeability and infiltration of leukocytes into spinal cord parenchyma. 6 weeks postinjection, no significant differences were observed in most measures of microvascular architecture following VEGF treatment, but analysis of histopathology in spinal cord tissue revealed profound exacerbation of lesion volume. These results support the idea that intraparenchymal application of the proangiogenic factor VEGF may exacerbate SCI, likely through its effect on vessel permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., and Dvorak, H. F. 1983. Tumor-cells secrete a vascular-permeability factor that promotes accumulation of ascites-fluid. Science 219:983-985.

    PubMed  Google Scholar 

  2. Robinson, C. J. and Stringer, S. E. 2001. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J. Cell Sci. 114:853-865.

    PubMed  Google Scholar 

  3. Dvorak, H. F. 2000. VPF/VEGF and the angiogenic response. Semin. Perinatol. 24:75-78.

    PubMed  Google Scholar 

  4. Miao, H. Q., Soker, S., Feiner, L., Alonso, J. L., Raper, J. A., and Klagsbrun, M. 1999. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: Functional competition of collapsin-1 and vascular endothelial growth factor-165. J. Cell Biol. 146:233-242.

    PubMed  Google Scholar 

  5. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., and Klagsbrun, M. 1998. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735-745.

    PubMed  Google Scholar 

  6. Carmeliet, P. and Storkebaum, E. 2002. Vascular and neuronal effects of VEGF in the nervous system: Implications for neurological disorders. Semin. Cell Dev. Biol. 13:39-53.

    PubMed  Google Scholar 

  7. Baek, J. H., Jang, J. E., Kang, C. M., Chung, H. Y., Kim, N. D., and Kim, K. W. 2000. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene 19:4621-4631.

    PubMed  Google Scholar 

  8. Jin, K. L., Mao, X. O., and Greenberg, D. A. 2000. Vascular endothelial growth factor: Direct neuroprotective effect in vitro ischemia. Proc. Natl. Acad. Sci. USA 97:10242-10247.

    PubMed  Google Scholar 

  9. Matsuzaki, H., Tamatani, M., Yamaguchi, A., Namikawa, K., Kiyama, H., Vitek, M. P., Mitsuda, N., and Tohyama, M. 2001. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: Signal transduction cascades. FASEB J. 15:1218-1220.

    PubMed  Google Scholar 

  10. Svensson, B., Peters, M., Konig, H. G., Poppe, M., Levkau, B., Rothermundt, M., Arolt, T., Kogel, D., and Prehn, J. H. M. 2002. Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J. Cereb. Blood Flow Metab. 22:1170-1175.

    PubMed  Google Scholar 

  11. Kawakami, A., Kitsukawa, T., Takagi, S., and Fujisawa, H. 1996. Developmentally regulated expression of a cell surface protein, neuropilin, in the mouse nervous system. J. Neurobiol. 29:1-17.

    PubMed  Google Scholar 

  12. Jin, K. L., Zhu, Y. H., Sun, Y. J., Mao, X. O., Xie, L., and Greenberg, D. A. 2002. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 99:11946-11950.

    PubMed  Google Scholar 

  13. Zhu, Y., Jin, K., Mao, X. O., and Greenberg, D. A. 2003. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. FASEB J. 17:186-193.

    PubMed  Google Scholar 

  14. Tator, C. H., and Fehlings, M. G. 1991. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg. 75:15-26.

    PubMed  Google Scholar 

  15. Dohrmann, G. J., Wagner, F. C., and Bucy, P. C. 1971. Microvasculature in transitory traumatic paraplegia: Electron microscopic study in monkey. J. Neurosurg. 35:263-271.

    Google Scholar 

  16. Griffiths, I. R., Burns, N., and Crawford, A. R. 1978. Early vascular changes in the spinal grey matter following impact injury. Acta Neuropathol. (Berl.) 41:33-39.

    Google Scholar 

  17. Bilgen, M. and Narayana, P. A. 2001. A pharmacokinetic model for quantitative evaluation of spinal cord injury with dynamic contrast-enhanced magnetic resonance imaging. Magn. Reson. Med. 46:1099-1106.

    PubMed  Google Scholar 

  18. Beggs, J. L. and Waggener, J. D. 1979. Microvascular regeneration following spinal cord injury: The growth sequence and permeability properties of new vessels. Adv. Neurol. 22: 191-206.

    PubMed  Google Scholar 

  19. Popovich, P. G., Horner, P. J., Mullin, B. B., and Stokes, B. T. 1996. A quantitative spatial analysis of the blood-spinal cord barrier: I Permeability changes after experimental spinal contusion injury. Exp. Neurol. 142:258-275.

    PubMed  Google Scholar 

  20. Holtz, A., Nystrom, B., and Gerdin, B. 1990. Relation between spinal cord blood flow and functional recovery after blocking weight-induced spinal cord injury in rats. Neurosurgery 26:952-957.

    PubMed  Google Scholar 

  21. Blight, A. R. 1991. Morphometric analysis of blood vessels in chronic experimental spinal cord injury: Hypervascularity and recovery of function. J. Neurol. Sci. 106:158-174.

    PubMed  Google Scholar 

  22. Casella, G. T., Marcillo, A., Bunge, M. B., and Wood, P. M. 2002. New vascular tissue rapidly replaces neural parenchyma and vessels destroyed by a contusion injury to the rat spinal cord. Exp. Neurol 173:63-76.

    PubMed  Google Scholar 

  23. Imperato-Kalmar, E. L., McKinney, R. A., Schnell, L., Rubin, B. P., and Schwab, M. E. 1997. Local changes in vascular architecture following partial spinal cord lesion in the rat. Exp. Neurol. 145:322-328.

    PubMed  Google Scholar 

  24. Loy, D. N., Crawford, C. H., Darnall, J. B., Burke, D. A., Onifer, S. M., and Whittemore, S. R. 2002. Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat. J. Comp. Neurol. 445:308-324.

    PubMed  Google Scholar 

  25. Bartholdi, D., Rubin, B. P., and Schwab, M. E. 1997. VEGF mRNA induction correlates with changes in the vascular architecture upon spinal cord damage in the rat. Eur. J. Neurosci. 9:2549-2560.

    PubMed  Google Scholar 

  26. Vaquero, J., Zurita, M., de Oya, S., and Coca, S. 1999. Vascular endothelial growth/permeability factor in spinal cord injury. J. Neurosurg. 90:220-223.

    Google Scholar 

  27. Hayashi, T., Sakurai, M., Abe, K., Sadahiro, M., Tabayashi, K., and Itoyama, Y. 1999. Expression of angiogenic factors in rabbit spinal cord after transient ischaemia. Neuropathol. Appl. Neurobiol. 25:63-71.

    PubMed  Google Scholar 

  28. Kovacs, Z., Ikezaki, K., Samoto, K., Inamura, T., and Fukui, M. 1996. VEGF and flt: Expression time kinetics in rat brain infarct. Stroke 27:1865-1872.

    PubMed  Google Scholar 

  29. Ogunshola, O. O., Stewart, W. B., Mihalcik, V., Solli, T., Madri, J. A., and Ment, L. R. 2000. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res. Dev. Brain Res. 119:139-153.

    PubMed  Google Scholar 

  30. Salhia, B., Angelov, L., Roncari, L., Wu, X., Shannon, P., and Guha, A. 2000. Expression of vascular endothelial growth factor by reactive astrocytes and associated neoangiogenesis. Brain Res. 883:87-97.

    PubMed  Google Scholar 

  31. Facchiano, F., Fernandez, E., Mancarella, S., Maira, G., Miscusi, M., D'Arcangelo, D., Cimino-Reale, G., Falchetti, M. L., Capogrossi, M. C., and Pallini, R. 2002. Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. J. Neurosurg. 97:161-168.

    PubMed  Google Scholar 

  32. Wamil, A. W., Wamil, B. D., and Hellerqvist, C. G. 1998. CM101-mediated recovery of walking ability in adult mice paralyzed by spinal cord injury. Proc. Natl. Acad. Sci. USA 95:13188-13193.

    PubMed  Google Scholar 

  33. Shubik, P., Feldman, R., Garcia, H., and Warren, B. A. 1976. Vascularization induced in the cheek pouch of the Syrian hamster by tumor and nontumor substances. J. Natl. Cancer Inst 57:769-774.

    PubMed  Google Scholar 

  34. Gruner, J. A. 1992. A monitored contusion model of spinal cord injury in the rat. J. Neurotrauma. 9:123-126.

    PubMed  Google Scholar 

  35. Magnuson, D. S. K., Trinder, T. C., Zhang, Y. P., Burke, D., Morassutti, D. J., and Shields, C. B. 1999. Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat. Exp. Neurol. 156:191-204.

    PubMed  Google Scholar 

  36. Cao, Q. L., Zhang, Y. P., Howard, R. M., Walters, W. M., Tsoulfas, P., and Whittemore, S. R. 2001. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp. Neurol 167:48-58.

    PubMed  Google Scholar 

  37. Cao, Q. L., Howard, R. M., Dennison, J. B., and Whittemore, S. R. 2002. Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp. Neurol. 177:349-359.

    PubMed  Google Scholar 

  38. Loy, D. N., Magnuson, D. S., Zhang, Y. P., Onifer, S. M., Mills, M. D., Cao, Q. L., Darnall, J. B., Fajardo, L. C., Burke, D. A., and Whittemore, S. R. 2002. Functional redundancy of ventral spinal locomotor pathways. J. Neurosci. 22:315-323.

    PubMed  Google Scholar 

  39. Westmark, R., Noble, L. J., Fukuda, K., Aihara, N., and McKenzie, A. L. 1995. Intrathecal administration of endothelin-1 in the rat: Impact on spinal cord blood flow and the blood-spinal cord barrier. Neurosci. Lett. 192:173-176.

    PubMed  Google Scholar 

  40. Benton, R. L., Ross, C. D., and Miller, K. E. 2001. Spinal taurine levels are increased 7 and 30 days following methylprednisolone treatment of spinal cord injury in rats. Brain Res. 893:292-300.

    PubMed  Google Scholar 

  41. Silverman, W. F., Krum, J. M., Mani, N., and Rosenstein, J. M. 1999. Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience 90:1529-1541.

    PubMed  Google Scholar 

  42. Skold, M., Cullheim, S., Hammarberg, H., Piehl, F., Suneson, A., Lake, S., Sjogren, A., Walum, E., and Risling, M. 2000. Induction of VEGF and VEGF receptors in the spinal cord after mechanical spinal injury and prostaglandin administration. Eur. J. Neurosci. 12:3675-3686.

    PubMed  Google Scholar 

  43. Zhang, Z. G., Zhang, L., Jiang, Q., Zhang, R. L., Davies, K., Powers, C., van Bruggen, N. and Chopp, M. 2000. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Invest. 106:829-838.

    PubMed  Google Scholar 

  44. Krum, J. M., Mani, N., and Rosenstein, J. M. 2002. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 110: 589-604.

    PubMed  Google Scholar 

  45. Casper, D., Engstrom, S. J., Mirchandani, G. R., Pidel, A., Palencia, D., Cho, P. H., Brownlee, M., Edelstein, D., Federoff, H. J., and Sonstein, W. J. 2002. Enhanced vascularization and survival of neural transplants with ex vivo angiogenic gene transfer. Cell Transplant. 11:331-349.

    PubMed  Google Scholar 

  46. Esiri, M. M. and Gay, D. 1990. Immunological and neuropathological significance of the Virchow-Robin space. J. Neurol. Sci. 100:3-8.

    PubMed  Google Scholar 

  47. Fitch, M. T., Doller, C., Combs, C. K., Landreth, G. E., and Silver, J. 1999. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci. 19:8182-8198.

    PubMed  Google Scholar 

  48. Cheng, S. Y., Nagane, M., Huang, H. J. S., and Cavenee, W. K. 1997. Intracerebral tumor-associated hemorrhage caused by over-expression of the vascular endothelial growth factor isoforms VEGF(121) and VEGF(165) but not VEGF(189). Proc. Natl. Acad. Sci. USA 94:12081-12087.

    PubMed  Google Scholar 

  49. Otomo, E. 1968. The vascular system and blood flow of the spinal cord. Trans. Am. Neurol. Assoc. 93:260-261.

    PubMed  Google Scholar 

  50. Jaeger, C. B. and Blight, A. R. 1997. Spinal cord compression injury in guinea pigs: Structural changes of endothelium and its perivascular cell associations after blood-brain barrier breakdown and repair. Exp. Neurol. 144:381-399.

    PubMed  Google Scholar 

  51. Noble, L. J. and Wrathall, J. R. 1989. Distribution and time course of protein extravasation in the rat spinal-cord after contusive injury. Brain Res. 482:57-66.

    PubMed  Google Scholar 

  52. Sasaki, S., Schneider, H., and Renz, S. 1978. Microcirculatory disturbances during the early phase following experimental spinal cord trauma in the rat. Adv. Neurol. 20:423-431.

    PubMed  Google Scholar 

  53. Proescholdt, M. A., Heiss, J. D., Walbridge, S., Muhlhauser, J., Capogrossi, M. C., Oldfield, E. H., and Merrill, M. J. 1999. Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. J. Neuropathol. Exp. Neurol. 58:613-627.

    PubMed  Google Scholar 

  54. Marumo, T., Schini-Kerth, V. B., and Busse, R. 1999. Vascular endothelial growth factor activates nuclear factor-kappa B and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells. Diabetes 48:1131-1137.

    PubMed  Google Scholar 

  55. Lee, T. H., Avraham, H., Lee, S. H., and Avraham, S. 2002. Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells. J. Biol. Chem. 277: 10445-10451.

    PubMed  Google Scholar 

  56. Bartholdi, D. and Schwab, M. E. 1995. Methylprednisolone inhibits early inflammatory processes but not ischemic cell death after experimental spinal cord lesion in the rat. Brain Res. 672:177-186.

    PubMed  Google Scholar 

  57. Taoka, Y. and Okajima, K. 1998. Spinal cord injury in the rat. Prog. Neurobiol. 56:341-358.

    PubMed  Google Scholar 

  58. Proescholdt, M. A., Jacobson, S., Tresser, N., Oldfield, E. H., and Merrill, M. J. 2002. Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats. J. Neuropathol. Exp. Neurol. 61:914-925.

    PubMed  Google Scholar 

  59. Mabon, P. J., Weaver, L. C., and Dekaban, G. A. 2000. Inhibition of monocyte/macrophage migration to a spinal cord injury site by an antibody to the integrin alpha D: A potential new anti-inflammatory treatment. Exp. Neurol. 166:52-64.

    PubMed  Google Scholar 

  60. Tonai, T., Shiba, K., Taketani, Y., Ohmoto, Y., Murata, K., Muraguchi, M., Ohsaki, H., Takeda, E., and Nishisho, T. 2001. A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats. J. Neurochem. 78: 1064-1072.

    PubMed  Google Scholar 

  61. Forstreuter, F., Lucius, R., and Mentlein, R. 2002. Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J. Neuroimmunol. 132:93-98.

    PubMed  Google Scholar 

  62. Barleon, B., Sozzani, S., Zhou, D., Weich, H. A., Mantovani, A., and Marme, D. 1996. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87:3336-3343.

    PubMed  Google Scholar 

  63. Clauss, M., Weich, H., Breier, G., Knies, U., Rockl, W., Waltenberger, J., and Risau, W. 1996. The vascular endothelial growth factor receptor Flt-1 mediates biological activities: Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 271: 17629-17634.

    PubMed  Google Scholar 

  64. Bethea, J. R. and Dietrich, W. D. 2002. Targeting the host inflammatory response in traumatic spinal cord injury. Curr. Opin. Neurol. 15:355-360.

    PubMed  Google Scholar 

  65. Popovich, P. G., Guan, Z., McGaughy, V., Fisher, L., Hickey, W. F., and Basso, D. M. 2002. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J. Neuropathol. Exp. Neurol. 61:623-633.

    PubMed  Google Scholar 

  66. Popovich, P. G., Guan, Z., Wei, P., Huitinga, I., van Rooijen, N., and Stokes, B. T. 1999. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158:351-365.

    PubMed  Google Scholar 

  67. Thurston, G. 2002. Complementary actions of VEGF and angiopoietin-1 on blood vessel growth and leakage. J. Anat. 200: 575-580.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott R. Whittemore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benton, R.L., Whittemore, S.R. VEGF165 Therapy Exacerbates Secondary Damage Following Spinal Cord Injury. Neurochem Res 28, 1693–1703 (2003). https://doi.org/10.1023/A:1026013106016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026013106016

Navigation