Skip to main content
Log in

Length scales for the fracture of nanostructures

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Length scales are essential to the understanding of small volume deformation and fracture in emerging technologies. Recent analysis by two groups at the atomistic (Horstmeyer and Baskes, 1999) and mesoscopic (Gerberich et al., 2002) levels have shown the importance of the volume to surface ratio to the indentation size effect (ISE) at small depths of penetration. We have interpreted this in terms of the plastic work under the contact and the surface work associated with the creation of new surface or the excess surface stress. Treating this as a modified Griffith criterion the case is made that this same length scale should apply to the delamination of thin films. By making this simple equivalency in length scales, an R-curve analysis for crack growth resistance, G R, in thin film delamination emerges. This recovers the classic σ2 ys h/E term as well as the fact that interfacial toughness should scale with the square root of incremental crack growth. Here σys is yield strength, h is thickness and E is modulus of the film. As applied to thin Cu and Au films bonded to silicon substrates, the model is in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bagchi, A., Lucas, G., Suo, Z. and Evans, A. (1994). A new procedure for measuring the decohesion energy for thin ductile films on substrates. J. Mater. Res. 9(7), 1734.

    Google Scholar 

  • Begley, M.R., Mumm, D.R., Evans, A.G. and Hutchinson, J.W. (2000). Analysis of a wedge impression test for measuring the interface toughness between films/coatings and ductile substrates. Acta Mater. 48, 3211.

    Article  Google Scholar 

  • Benjamin, P. and Weaver, C. (1960). Measurement of adhesion of thin films. Proc. Roy. Soc. London A254, 163.

    Google Scholar 

  • Burnett, P. and Rickersby, D. (1987). Relationship between hardness and scratch adhesion. Thin Solid Films 154, 403.

    Article  Google Scholar 

  • Eshelby, J.D., Frank, F.C. and Nabarro, F.R.N. (1951). The equilibrium of linear arrays of dislocations. Philos. Mag. 42, 351.

    Google Scholar 

  • Evans, A.G., Hutchinson, J.W. and Wei, Y. (1999). Interface adhesion: effects of plasticity and segregation. Acta Mater. 47(15), 4093.

    Article  Google Scholar 

  • Gerberich, W.W., Tymiak, N.I., Grunlan, J.C., Horstemeyer, M.F. and Baskes, M.I. (2002). Interpretations of indentation size effects. J. Appl. Mech. 69, 433.

    Article  Google Scholar 

  • Gerberich, W.W., Tymiak, N.I., Kramer, D.E., Daugela, A., Jungk, J. and Li, M. (2002). An approach to dry friction and wear for small volumes. Philos. Mag. A, 82, 3349.

    Article  Google Scholar 

  • Gerberich, W.W., Lilleodden, E.T., Foecke, T.J. and Wyrobek, T.J. (1995). Dislocation Mechanics of Point Forces. Micromechanics of Advanced Materials. J.C.M. Li Symposium, TMS, Warrendale, PA, 29–35.

    Google Scholar 

  • Harvey, S., Huang, H., Venkataraman, S. and Gerberich, W.W., (1993). Microscopy and microindentation mechanics of single crystal Fe-3 wt. % Si: Part I. Atomic force microscopy of a small indentation. J. Mater. Res. 8(6), 1291.

    Google Scholar 

  • Hoehn, J.W., Venkataraman, S.K., Huang, H. and Gerberich, W.W. (1995). Micromechanical toughness test applied to NiAI. Matl's. Sci. and Engng. A192/193, 306.

    Google Scholar 

  • Horstemeyer, M.E. and Baskes, M.I. (1999). Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses. J. Engng. Mater. Tech., Trans. ASME 121, 114.

    Google Scholar 

  • Johnson, K.L. (1970). The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115.

    Article  Google Scholar 

  • Kramer, D.E., Volinsky, A.A., Moody, N.R. and Gerberich, W.W. (2001). Substrate effects on indentation plastic zone development in thin soft films. J. Mater. Res. 16(11), 3150.

    Google Scholar 

  • Kriese, M.D., Moody, N.R. and Gerberich, W.W. (1999). Quantative adhesion measures of multilayer films – I. Indentation mechanics, II. Indentation of W/Cu, W/W, Cr/W. J. Mater. Res. 14(7), 3007 (Part I), 3019 (Part II).

    Google Scholar 

  • Lane, M. and Dauskardt, R.H. (2000). Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. J. Mater. Res. 15(1), 203.

    Google Scholar 

  • Lipkin, D.M., Clarke, D.R. and Evans, A.G. (1998). Effect of interfacial carbon on adhesion and toughness of gold-sapphire interfaces. Acta Mater. 46(13), 4835.

    Article  Google Scholar 

  • Marshall, D.B. and Evans, A.G. (1984).Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination. J. Appl. Phys. 56, 2632.

    Article  Google Scholar 

  • Ostertag, C.P., Charalambides, P.G. and Evans, A.G. (1989). Observations and analysis of sintering damage. Acta Metall. 37(7), 2077.

    Article  Google Scholar 

  • Rosenfeld, L.G., Ritter, J.E., Lardner, T.J. and Lin, M.R. (1990). Use of the microindentation technique for determining interfacial fracture energy. J. Appl. Phys. 67(7), 3291.

    Article  Google Scholar 

  • Tymiak, N.I., Kramer, D.E., Bahr, D.F., Wyrobek, T.J. and Gerberich, W.W. (2001). Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49, 1021.

    Article  Google Scholar 

  • Tymiak, N.I., Volinksy, A.A., Kriese, M.D., Downs, S.A. and Gerberich, W.W. (1999). The role of plasticity in bimaterial fracture with ductile interlayers. Metall. Mater. Trans. 31A, 863.

    Google Scholar 

  • Venkataraman, S., Kohlstedt, D. and Gerberich, W.W. (1993). Continuous microindentation of passivating surfaces. J. Mater. Res. 8, 685.

    Google Scholar 

  • Venkataraman, S., Kohlstedt, D. and Gerberich, W.W. (1992). Microscratch analysis of the work of adhesion for Pt thin films on NiO. J. Mater. Res. 7, 1126.

    Google Scholar 

  • Vlassak, J.J., Drory, M.D. and Nix, W.D. (1997). A simple technique for measuring the adhesion of brittle films to ductile substrates with application to diamond-coated titanium. J. Mater. Res. 12, 1900.

    Google Scholar 

  • Volinksy, A.A., Moody, N.R. and Gerberich, W.W. (2002). Interfacial toughness measurements for thin films on substrates. Acta Mater. 50, 441.

    Article  Google Scholar 

  • Volinksy, A.A., Tymiak, N.I., Kriese, M.D., Gerberich, W.W. and Hutchinson, J.W. (1999). Quantitative modeling and measurement of copper thin film adhesion. Mater. Res. Soc. Proc. 539, 277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerberich, W.W., Jungk, J.M., Li, M. et al. Length scales for the fracture of nanostructures. International Journal of Fracture 120, 387–405 (2003). https://doi.org/10.1023/A:1024927812734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024927812734

Navigation