Skip to main content
Log in

Comparison of Mediterranean Pistacia lentiscus Genotypes by Random Amplified Polymorphic DNA, Chemical, and Morphological Analyses

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Characterization of the genetic variability of Mediterranean Pistacia lentiscus genotypes by RAPD, composition of essential oils, and morphology is presented. High polymorphism in morphological parameters was found among accessions, with no significant differences in relation to geographical origin, or to gender. GC-MS analysis of leaves extracted by t-butyl methyl ether, showed 12 monoterpenes, seven sesquiterpenes, and one linear nonterpenic compound. Cluster analysis divided the accessions into two main groups according to the relative content of the major compounds, with no relation to their geographical origin. In contrast, a dendrogram based on RAPD analysis gave two main clusters according to their geographical origins. Low correlation was found between genetic and essential oil content matrices. High morphological and chemical variability on one hand, and genotypic polymorphism on the other, provide ecological advantages that might explain the distribution of Pistacia lentiscus over a wide range of habitats. The plants under study were grown together in the same climatic and environmental conditions, thus pointing to the plausible genetic basis of the observed phenotypic differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Habbal, M. J., Al-Habbal, Z., and Huwezi, F. U. 1984. A double-blind controlled clinical trial of mastic and placebo in the treatment of duodenal ulcer. Clin. Exp. Pharmacol. Physiol. 11:541–544.

    Google Scholar 

  • Al-Said, M. A., Ageeland, A. M., and Parmar, N. S. 1986. Evaluation of mastic a crude drug obtained from Pistacia lentiscus for gastric and duodenal anti-ulcer activity. J. Ethnopharmacol. 15:271–278.

    Google Scholar 

  • Barradas, H.C.D. and Correia, O. 1999. Sexual dimorphism, sex ratio and spatial distribution of male and female shrubs in the dioecious species Pistacia lentiscus L. Folia Geobot. 34:163–174.

    Google Scholar 

  • Boelens, M. H. and Jimenez, R. 1991. Chemical composition of the essential oils from the gum and from various parts of Pistacia lentiscus L. (mastic gum tree). Flavour Frag. J. 6:271–275.

    Google Scholar 

  • Browicz, K. 1987. Pistacia lentiscus cv. Chia (Anacardiaceae) on Chios island. Plant Syst. Evol. 155:189–195.

    Google Scholar 

  • Castola, V., Bighelli, A., and Casanova, J. 2000. Intraspecific chemical variability of the essential oil of Pistacia lentiscus L. from Corsica. Biochem. Syst. Ecol. 28:79–88.

    Google Scholar 

  • De pooter, H. A., Schamp, N. M., Aboutabl, E. A., El tohamy, S. F., and Doss, S. L. 1991. Essential oils from leaves of three Pistacia species grown in Egypt. Flavour Frag. J. 6:229–232.

    Google Scholar 

  • Doyle, J. J. and Doyle, J. L. 1987. A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.

    Google Scholar 

  • Fleisher, Z. and Fleisher, A. 1992. Volatiles of the mastic tree-Pistacia lentiscus L. Aromatic plants of the holy land and the Sinai. Part X. J. Essential Oil Res. 4:663–665.

    Google Scholar 

  • Golan-Goldhirsh, A. and Kostiukovsky, V. 1998. Mediterranean Pistacia genus germplasm collection at Sede Boker Israel. Acta Hort. 470:131–137.

    Google Scholar 

  • Graham, J. H., Freeman, D. C., and Emlen, J. M. 1993. Antisymmetry, directional asymmetry, and dynamic morphogenesis. Genetica 89:121–137.

    Google Scholar 

  • Gratani, L. 1995. Structural and ecophysiological plasticity of some evergreen species of the Mediterranean maquis in response to climate. Photosynthetica 31:335–343.

    Google Scholar 

  • Hormaza, J. I., Dollo, L., and Polito, V. S. 1994. Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor. Appl. Genet. 89:9–13.

    Google Scholar 

  • Johnson, C. B., Kirby, J., Naxakis, G., and Pearson, S. 1999. Substantial UV-B-mediated induction of essential oils in sweet basil (Ocimum basilicum L.). Phytochemistry 51:507–510.

    Google Scholar 

  • Khandka, D. K., Tuna, M., Tal, M., Nejidat, A., and Golan-Goldhirsh, A. 1997. Variability in the pattern random amplified polymorphic DNA. Electrophoresis 18:2852–2856.

    Google Scholar 

  • Lewinsohn, E., Savage, T. J., Gizen, M., and Croteau, R. 1993. Simultaneous analysis of monoter-penes and diterpenoids of conifer oleoresin. Phytochem. Anal. 4:220–225.

    Google Scholar 

  • Llusia, J. and Penuelas, J. 1998. Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can. J. Bot. 76:1366–1373.

    Google Scholar 

  • Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Papageorgiou, V.P., Mellidis, A. S., and Argyriadou, N. 1991. The chemical composition of the essential oil of mastic gum. J. Essential Oil Res. 3:107–110.

    Google Scholar 

  • Parker, P. G., Snow, A. A., Schug, M. D., Booton, G. C., and Fuerst, P. A. 1998. What molecules can tell us about populations: Choosing and using a molecular marker. Ecology 79:361–382.

    Google Scholar 

  • Maglatis, P., Melliou, E., Skaltsounis, A. L., Chinou, I. B., and Mitaku, S. 1999. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia. Planta Med. 65:749–752.

    Google Scholar 

  • Ross, J.D. and Sombrero, C. 1991. Environmental control of essential oil production in Mediterranean plants, pp. 83–94, in J. B. Harborne and F. A. Tomas-Barberan (Eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.

    Google Scholar 

  • Sangwan, N. S., Yadav, U., and Sangwan, R. S. 2001. Molecular analysis of genetic diversity in elite Indian cultivars of essential oil trade types of aromatic grasses (Cymbopogon species). Plant Cell Rep. 20:437–444.

    Google Scholar 

  • Shaviv, I. 1978. Autecology of Pistacia Lentiscus L. Doctoral Dissertation. Technion, Israel Institute of Technology, Haifa, Israel.

    Google Scholar 

  • Vieira, R.F., Grayer, R. J., Paton, A., and Simon, J. E. 2001. Genetic diversity of Ocimum gratis-simum L. based on volatile oil constituents, flavonoids and RAPD markers. Biochem. Syst. Ecol. 29:287–304.

    Google Scholar 

  • Zohary, D. 1996. The genus Pistacia L., pp. 1–11, in S. Padulosi, T. Caruso, and E. Barone (Eds.). Taxonomy, Distribution, Conservation and Uses of Pistacia Genetic Resources, IPGRI, Rome, Italy.

    Google Scholar 

  • Zohary, M. 1952. A monographical study of the genus Pistacia. Palestine J. Bot. Jerusalem Ser. 5:187–238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi Golan-Goldhirsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barazani, O., Dudai, N. & Golan-Goldhirsh, A. Comparison of Mediterranean Pistacia lentiscus Genotypes by Random Amplified Polymorphic DNA, Chemical, and Morphological Analyses. J Chem Ecol 29, 1939–1952 (2003). https://doi.org/10.1023/A:1024862614345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024862614345

Navigation