Skip to main content
Log in

Differential sensitivity of green algae to allelopathic substances from Chara

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Three short-term laboratory experiments were conducted to investigate allelopathic effects of a mixture of Chara globularis var. globularis Thuillier and Chara contraria var. contraria A. Braun ex Kützing on three different green algae. Single phytoplankton species were exposed to filtered water originating from charophyte cultures. Phytoplankton growth was monitored by determination of chlorophyll concentrations in batch cultures. The change in chlorophyll concentration during the experiments was analysed with a logistic growth model, resulting in an estimate of the exponential growth rate and the duration of the lag phase of the single green algae. The results indicate allelopathic effects of Chara on the growth of the green algae Selenastrum capricornutum Printz and Chlorella minutissima Fott et Nováková, whereas Scenedesmus obliquus (Turpin) Kützing did not seem to be affected. The exponential growth rate of S. capricornutum decreased 7% in the presence of water from a charophyte culture, while the growth rate of C. minutissima decreased with 3%. The allelopathic effect of Chara did not increase when the green alga C. minutissima was P-limited. The effect of Chara was different when young sprouts were used. With young sprouts the duration of the lag phase of C. minutissima was extended (25%), whilst for old plants the growth rate of this green alga decreased. Although the inhibiting effect of charophytes on specific phytoplankton species is rather small, the differential sensitivity of the species to Chara might influence the composition and biomass of phytoplankton communities in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anthoni, U., C. Christophersen, J. Øgård Madsen, S. Wium-Andersen & N. Jacobsen, 1980. Biologically active sulphur compounds from the green alga Chara globularis. Phytochemistry 19: 1228-1229.

    Google Scholar 

  • Blindow, I., 1987. The composition and density of epiphyton on several species of submerged macrophytes - the neutral substate hypothesis tested. Aquat. Bot. 29: 157-168.

    Google Scholar 

  • Blindow, I., 1992. Long-and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwat. Biol. 28: 15-27.

    Google Scholar 

  • Blindow & Hootsmans, 1991. Allelopathic effects from Chara spp. on two species of unicellular green algae. In: Hootsmans, M. J. M. & J. E. Vermaat (eds), Macrophytes, A Key to Understanding Changes Caused by Eutrophication in Shallow Freshwater Ecosystems. IHE, Report Series, Delft, 21, 139-144.

  • Brammer, E. S., 1979. Exclusion of phytoplankton in the proximity of dominant water-soldier (Stratiotes aloides). Freshwat. Biol. 9: 233-249.

    Google Scholar 

  • Burks, R. L., E. Jeppesen & D. M. Lodge, 2001. Littoral zone structures as Daphnia refugia against fish predators. Limnol. Oceanogr. 46: 230-237.

    Google Scholar 

  • Coops, H. & R.W. Doef, 1996. Submerged vegetation development in two shallow, eutrophic lakes. Hydrobiologia 340: 115-120.

    Google Scholar 

  • Crawford, S. A., 1977. Chemical, physical and biological changes associated with Chara succession in farm ponds. Hydrobiologia 55: 209-217.

    Google Scholar 

  • Crawford, S. A., 1979. Farm pond restoration using Chara vulgaris vegetation. Hydrobiologia 62: 17-31.

    Google Scholar 

  • De Lyon, M. J. H. & J. G. M. Roelofs, 1986. Waterplanten in relatie tot waterkwaliteit en bodemgesteldheid. Deel 1 & 2. Laboratorium voor Aquatische Oecologie, Katholieke Universiteit Nijmegen, Nijmegen [in Dutch].

    Google Scholar 

  • Droop, M. R., 1966. Vitamin B12 and marine ecology III. An experiment with a chemostat. J. mar. biol. Ass. U.K. 46: 659-671.

    Google Scholar 

  • Dytham, C., 1999. Choosing and Using Statistics. A Biologist's Guide. Blackwell Science Ltd, Oxford, 218 pp.

  • Eberly, W. R., 1967. Problems in the laboratory culture of planktonic blue-green algae. In: Environmental requirements of blue-green algae: 7-34Corvallis, Oregon: U.S. Department of the Interior.

    Google Scholar 

  • Elakovich, S. D. & J. W. Wooten, 1987. An examination of the phytotoxicity of the water shield, Brasenia schreberi. J. Chem. Ecol. 13: 1935-1940.

    Google Scholar 

  • Fitzgerald, G. P., 1969. Some factors in the competition or antagonism among bacteria, algae and aquatic weeds. J. Phycol. 5: 351-359.

    Google Scholar 

  • Fogg, G. E. & B. Thake, 1987. Algal Cultures and Phytoplankton Ecology, 3rd edn. The University of Wisconsin Press, Madison, WI, 269 pp. 270

    Google Scholar 

  • Forsberg, C., S. Kleiven & T. Willén, 1990. Absence of allelopathic effects of Chara on phytoplankton in situ. Aquat. Bot. 38: 289-294.

    Google Scholar 

  • Fowler, J., L., Cohen & P. Jarvis, 1998. Practical Statistics for Field Biology. John Wiley & Sons Ltd, Chichester, 259 pp.

    Google Scholar 

  • Godmaire, H. & D. Planas, 1986. Influence of Myriophyllum spicatum L. on the species composition, biomass and primary productivity of phytoplankton. Aquat. Bot. 23: 299-308.

    Google Scholar 

  • Gopal, B. & U. Goel, 1993. Competition and allelopathy in aquatic plant communities. Bot. Rev. 59: 155-210.

    Google Scholar 

  • Grade, R., J. Gonzalez-Valero, P. Höcht & V. Pfeifle, 2000. A higher tier flow-through toxicity test with the green alga Selenastrum capricornutum. Sci. Tot. Environ. 247: 355-361.

    Google Scholar 

  • Gross, E., H. Meijer & G. Schilling, 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41: 133-138.

    Google Scholar 

  • Guillard, R. R. L. & C. J. Lorenzen, 1972. Yellow-green algae with chlorophyllide c. J. Phycol. 8: 10-14.

    Google Scholar 

  • Hälling-Sørensen, B., N. Nyholm & A. Baun, 1996. Algal toxicity tests with volatile and hazardous compounds in air-tight test flasks with CO2 enriched headspace. Chemosphere 32: 1513-1526.

    Google Scholar 

  • Hootsmans, M. J. M. & J. E. Vermaat, 1991. Macrophytes, A Key to Understanding Changes Caused by Eutrophication in Shallow Freshwater Ecosystems. PhD thesis, University of Wageningen.

  • Howard-Williams, C., 1978. Growth and reproduction of aquatic macrophytes in a south temperate saline lake. Verh. int. Ver. Limnol. 20: 1153-1158.

    Google Scholar 

  • Jasser, I., 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 21-32.

    Google Scholar 

  • Jeppesen, E., 1998. The ecology of shallow lakes - Trophic interactions in the pelagial. DSc-thesis, University of Copenhagen, Denmark.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Mortensen & T. Jørgensen, 1998a. Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: an 18 year study of a shallow hypertrophic lake. Ecosystems 1: 250-267.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen, 1998b. The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York, 423 pp.

  • Kogan, S. I., G. A. Chinnova & M. E. Kravchenko, 1972. The effect of macrophytes on certain algae in joint cultivation. Izv. Akad. Nauk. Turkm. SSR Ser. Biol. Nauk. 3: 3-8.

    Google Scholar 

  • Lage, O. M., A. M. Parente, M. T. S. D. Vasconcelos, C. A. R. Gomes & R. Salema, 1996. Potential tolerance mechanisms of Prorocentrum micans (dinophyceae) to sublethal levels of copper. J. Phyol. 32: 416-423.

    Google Scholar 

  • Lürling, M., 1999. The smell of water. Grazer-induced colony formation in Scenedesmus. PhD thesis, University of Wageningen

  • Mayer, P., R. Cuhel & N. Nyholm, 1997. A simple in vitro fluorescence method for biomass measurements in algal growth inhibition tests. Wat. Res. 31: 2525-2531.

    Google Scholar 

  • Meijer, M.-L., E. H. R. R. Lammens, A. J. P. Raat, J. P. G. Klein Breteler & M. P. Grimm, 1995. Development of fish communities in lakes after biomanipulation. Neth. J. aquat. Ecol. 29: 91-101.

    Google Scholar 

  • Meijer, M.-L., I. De Boois, M. Scheffer, R. Portielje & H. Hosper, 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hydrobiologia 408/409: 13-30.

    Google Scholar 

  • Mjelde, M. & B. Faafeng, 1997. Ceratophyllum demersum (L.) hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus level and geographic latitude. Freshwat. Biol. 37: 355-365.

    Google Scholar 

  • Meijer, M.-L. & H. Hosper, 1997. Effects of biomanipulation in the large and shallow Lake Wolderwijd, The Netherlands. Hydrobiologia 342/343: 335-349.

    Google Scholar 

  • Moss, B., 1976. The effects of fertilization and fish on community structure and biomass of aquatic macrophytes and epiphytic algal populations: an ecosystem experiment. J. Ecol. 64: 313-342.

    Google Scholar 

  • Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367-377.

    Google Scholar 

  • Okay, O. S. & A. Gaines, 1996. Toxicity of 2,4-D acid to phytoplankton. Wat. Res. 30: 688-696.

    Google Scholar 

  • Ozimek, T., R. D. Gulati & E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200/201: 399-407.

    Google Scholar 

  • Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103-126.

    Google Scholar 

  • Planas, D., F. Sarhan, L. Dube, H. Godmaire & C. Cadieux, 1981. Ecological significance of phenolic compounds of Myriophyllum spicatum. Verh. int. Ver. Limnol. 21: 1492-1496.

    Google Scholar 

  • Pokorný, J., J. Kvet, J. P. Ondok, Z. Toul & I. Ostrþ, 1984. Production - ecological analysis of a plant community dominated by Elodea canadensis Michx. Aquat. Bot. 19: 263-292.

    Google Scholar 

  • Proctor, V. W., 1971. Chara globularis Thuillier (=C. fragilis Desvaux): breeding patterns within a cosmopolitan complex. Limnol. Oceanogr. 16: 422-436.

    Google Scholar 

  • Proctor, V. W., 1975. The nature of charophytes species. Phycology 14: 97-113.

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge, 384 pp.

    Google Scholar 

  • Rice, E. L., 1984. Allelopathy, second edition, Academic Press, Orlando, FL, 422 pp.

    Google Scholar 

  • Roelofs, J. G. M., 1991. Vegetation under chemical stress: effects of acidification, eutrophication and alkalinisation. PhD thesis, University of Nijmegen.

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat. Bot. 41: 137-175.

    Google Scholar 

  • Scheffer, M., H. S. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. TREE 8: 275-279.

    Google Scholar 

  • Scheffer, M., M. S. Van den Berg, A. Breukelaar, C. Breukers, H. Coops, R. Doef & M.-L. Meijer, 1994. Vegetated areas with clear water in turbid shallow lakes. Aquat. Bot. 49: 193-196.

    Google Scholar 

  • Shi, X.-M., H.-J. Lui, X.-W. Zhang & F. Chen, 1999. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem 34: 341-347.

    Google Scholar 

  • Shi, X.-M., X.-W. Zhang & F. Chen, 2000. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb. Tech. 27: 312-318.

    Google Scholar 

  • Simons, J. & E. Nat, 1996. Past and present distribution of stoneworts (Characeae) in The Netherlands. Hydrobiologia 340: 127-135.

    Google Scholar 

  • Simons, J., M. Ohm, R. Daalder, P. Boers & W. Rip, 1994. Restoration of Botshol (The Netherlands) by reduction of external nutrient load: recovery of a characean community, dominated by Chara connivens. Hydrobiologia 275/276: 243-253.

    Google Scholar 

  • Smolders, A. J. P., 1995. Mechanisms involved in the decline of aquatic macrophytes; in particular of Stratiotes aloides L. PhD thesis, University of Nijmegen.

  • Smolders, A. J. P. & J. G. M. Roelofs, 1993. Sulphate mediated iron limitation and eutrophication in aquatic ecosystems. Aquat. Bot. 46: 247-253.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry, 3rd edn. W. H. Freeman and Co., New York, 887 pp.

    Google Scholar 

  • van den Berg, M. S., 1999. Charophyte colonization in shallow lakes-processes, ecological effects and implications for lake management. PhD thesis, University of Amsterdam.

  • van den Berg, M. S., M. Scheffer, H. Coops, 1998a. The role of characean algae in the management of eutrophic shallow lakes. J. Phycol. 34: 750-756.

    Google Scholar 

  • van den Berg, M. S., H. Coops, M.-L. Meijer, M. Scheffer & J. Simons, 1998b. Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, The Netherlands. In: Jeppesen E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 339-352.

  • van Donk, E., 1998. Switches between clear and turbid water states in a biomanipulated lake (1986-1996): The role of herbivory on macrophytes. In: Jeppesen E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 290-297.

  • van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot. 72: 261-274.

    Google Scholar 

  • van Donk, E., M. P. Grimm, R. D. Gulati & J. P. G. Klein Breteler, 1990. Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200/201: 275-289.

    Google Scholar 

  • van Donk, E., R. D. Gulati, A. Iedema & J. T. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19-26.

    Google Scholar 

  • Vermaat, J. E., Santamaria, L. & P. J. Roos, 2000. Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch. Hydrobiol. 148: 549-562.

    Google Scholar 

  • Weaks, T., 1988. Allelopathic interference as a factor influencing the periphyton community of a freshwater marsh. Arch. Hydrobiol. 111: 369-382.

    Google Scholar 

  • Weisner, S. E. B., P. G. Eriksson, W. Granéli & L. Leonardson, 1994. Influence of macrophytes on nitrate removal in wetlands. Ambio 23: 363-366.

    Google Scholar 

  • Wium-Andersen, S., 1987. Allelopathy among aquatic plants. Arch. Hydrobiol. Beih. Erg. Limnol. 27: 167-172.

    Google Scholar 

  • Wium-Andersen, S., U. Anthoni, C. Christophersen & G. Houen, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187-190.

    Google Scholar 

  • Wium-Andersen, S., U. Anthoni & G. Houen, 1983. Elemental sulphur, a possible allelopathic compound from Ceratophyllum demersum. Phytochemistry 22: 2613.

    Google Scholar 

  • Wolfe, J. M. & E. L. Rice, 1979. Allelopathic interactions among algae. J. Chem. Ecol. 5: 533-542.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulderij, G., Van Donk, E. & Roelofs, J.G.M. Differential sensitivity of green algae to allelopathic substances from Chara . Hydrobiologia 491, 261–271 (2003). https://doi.org/10.1023/A:1024483704903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024483704903

Navigation