Skip to main content
Log in

Identification of novel tropomyosin 1 genes of pufferfish (Fugu rubripes) on genomic sequences and tissue distribution of their transcripts

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fugu genome database enabled us to identify two novel tropomyosin 1 (TPM1) genes through in silico data mining and isolation of their corresponding cDNAs in vivo. The duplicate TPM1 genes in Japanese pufferfish Fugu rubripes suggest that additional an ancient segmental duplication or whole genome duplication occurred in fish lineage, which, like many other reported Fugu genes, showed reduction in genomic size in comparison with their human homologue. Computer analysis predicted that the coiled-coil probabilities, that were thought to be the most major function of TPM, were the same between the two TPM1 isoforms. We confirmed that the tissue expression profiles of the two TPM1 genes differed from each other, which implied that changes in expression pattern could fix duplicated TPM1 genes although the two TPM1 isoforms appear to have similar function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lees-Miller JP & Helfman DM (1991) Bioessays 13: 429–437.

    Google Scholar 

  2. Perry SV (2001) J. Muscle Res. Cell Motil. 22: 5–49.

    Google Scholar 

  3. Wang YC & Rubenstein PA (1992) J. Biol. Chem. 267: 12004–12010.

    Google Scholar 

  4. Goodwin LO, Lees-Miller JP, Leonard MA & Helfman DM (1991) J. Biol. Chem. 266: 8408–8415.

    Google Scholar 

  5. Dufour C, Weinberger RP, Schevzov G & Gunning P (1998) J. Biol. Chem. 273: 18547–18555.

    Google Scholar 

  6. Beisel KW & Kennedy JE (1994) Gene 143: 251–256.

    Google Scholar 

  7. Helfman DM, Cheley S, Kuismanen E & Yamawaki-Kataoka Y (1986) Mol. Cell. Biol. 6: 3582–3595.

    Google Scholar 

  8. Wieczorek DF, Smith CW & Nadal-Ginard B (1988) Mol. Cell. Biol. 8: 679–694.

    Google Scholar 

  9. Lees-Miller JP, Goodwin LO & Helfman DM (1990) Mol. Cell. Biol. 10: 1729–1742.

    Google Scholar 

  10. Cooley BC & Bergtrom G (2001) Arch. Biochem. Biophys. 390: 71–77.

    Google Scholar 

  11. Blanchard EM, Iizuka K, Christe M, Conner DA, Geisterfer-Lowrance A, Schoen FJ, Maughan DW & Seidman JG (1997) Circ. Res. 81: 1005–1010.

    Google Scholar 

  12. Rethinasamy P, Muthuchamy M, Hewett T, Boivin G, Wolska BM, Evans C & Wieczorek DF (1998) Circ. Res. 82: 116–23.

    Google Scholar 

  13. Ochiai Y, Ahmed K, Ahsan MN, Funabara D & Watabe S (2001) Fish. Sci. 67: 556–558.

    Google Scholar 

  14. Brenner S, Elgar G, Sandford R, Macrae A & Aparicio S (1993) Nature 366: 265–268.

    Google Scholar 

  15. Venkatesh B, Gilligan P & Brenner S (2000) FEBS Lett. 476: 3–7.

    Google Scholar 

  16. Clark MS, Smith SF & Elgar G (2001) Mar. Biotechnol. 3: 130–140.

    Google Scholar 

  17. Elgar G, Sandford R, Aparicio S, Macrae A & Brenner S (1996) Trends Genet. 12: 145–150.

    Google Scholar 

  18. Elgar G (1996) Hum. Mol. Genet. 5: 1437–1442.

    Google Scholar 

  19. Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit AF, Sollewijn Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D & Brenner S (2002) Science 297: 1301–1310.

    Google Scholar 

  20. Kinoshita S, Kaneko G, Lee JH, Kikuchi K, Yamada H, Takeya H, Itoh Y & Watabe S (2001) Eur. J. Biochem. 268: 4599–4609.

    Google Scholar 

  21. Thompson JD, Higgins DG & Gibson TJ (1994) Nucleic Acids Res. 22: 4673–4680.

    Google Scholar 

  22. Saitou N & Nei M (1987) Mol. Biol. Evol. 4: 406–25.

    Google Scholar 

  23. Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R & Miller W (2000) Genome Res. 10: 577–586.

    Google Scholar 

  24. Lupas A, Van Dyke M & Stock J (1991) Science 252: 1162–1164.

    Google Scholar 

  25. Sonnhammer EL & Durbin R, 1995. Gene 167: GC1–10.

    Google Scholar 

  26. Wingender E, Chen X, Fricke E, Geffers R, Hehl R, Liebich I, Krull M, Matys V, Michael H, Ohnhauser R, Pruss M, Schacherer F, Thiele S and Urbach S, 2001. Nucleic Acids Res 29: 281–283.

    Google Scholar 

  27. Venkatesh B, Tay BH & Brenner S (1996) J. Mol. Biol. 259: 655–665.

    Google Scholar 

  28. Naito T, Saito Y, Yamamoto J, Nozaki Y, Tomura K, Hazama M & Brenner S (1998) Proc. Natl. Acad. Sci. U.S.A. 95: 5178–5181.

    Google Scholar 

  29. Gaillard C, Theze N, Hardy S, Allo MR & Thiebaud P (1998) Dev. Genes Evol. 207: 435–445.

    Google Scholar 

  30. Duriez P, Lesimple M & Hardy S (2000) DNA Cell Biol. 19: 365–376.

    Google Scholar 

  31. Villard L, Tassone F, Crnogorac-Jurcevic T & Gardiner K (1998) Gene 210: 17–24.

    Google Scholar 

  32. Tassone F, Villard L & Gardiner K (1999) Gene 226: 211–223.

    Google Scholar 

  33. Kehrer-Sawatzki H, Maier C, Moschgath E & Krone W (1998) Gene 222: 145–153.

    Google Scholar 

  34. Smith SF, Metcalfe JA & Elgar G (2001) Gene 265: 195–204.

    Google Scholar 

  35. Aparicio S (2000) Trends Genet. 16: 54–56.

    Google Scholar 

  36. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M & Postlethwait JH (1998) Science 282: 1711–1714.

    Google Scholar 

  37. Force A, Lynch M, Pickett FB, Amores A, Yan YL & Postlethwait J, 1999. Genetics 151: 1531–1545.

    Google Scholar 

  38. Suzuki Y, Taira H, Tsunoda T, Mizushima-Sugano J, Sese J, Hata H, Ota T, Isogai T, Tanaka T, Morishita S, Okubo K, Sakaki Y, Nakamura Y & Sugano S (2001) EMBO Rep. 2: 388–393.

    Google Scholar 

  39. Ramji DP, Tadros MH, Hardon EM & Cortese R, 1991. Nucleic Acids Res 19: 1139–1146.

    Google Scholar 

  40. Taylor MV, 1991. Nucleic Acids Res 19: 2669–2675.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, D., Toramoto, T., Ochiai, Y. et al. Identification of novel tropomyosin 1 genes of pufferfish (Fugu rubripes) on genomic sequences and tissue distribution of their transcripts. Mol Biol Rep 30, 83–90 (2003). https://doi.org/10.1023/A:1023995208279

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023995208279

Navigation