Skip to main content
Log in

Surface acidity of supported vanadia catalysts

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The surface acidity of SiO2, γ-Al2O3 and TiO2 supported vanadia catalysts has been studied by the microcalorimetry and infrared spectroscopy using ammonia as the probe molecule. The acidity in terms of nature, number and strength was correlated with surface structures of vanadia species in the catalysts, characterized by X-ray diffraction and UV-Vis spectroscopy. It was found that the dispersion and surface structure of vanadia species depend on the nature of supports and loading and affect strongly the surface acidity. On SiO2, vanadium species is usually in the form of polycrystalline V2O5 even for the catalyst with low loading (3%) and these V2O5 crystallites exhibit similar amount of Brönsted and Lewis acid sites. The 25%V2O5/SiO2 catalyst possesses substantial amount of V2O5 crystallites on the surface with the initial heat of 105 kJ mol-1 and coverage of about 600 mmol g-1 for ammonia adsorption. Vanadia can be well dispersed on g-Al2O3and TiO2 to form isolated tetrahedral species and polymeric two-dimensional network. Addition of vanadia on γ-Al2O3 results in the change of acidity from that associated with g-Al2O3 (mainly Lewis sites) to that associated with vanadia (mainly Brönsted sites) and leads to the decreased acid strength. The 3%V2O5/TiO2 catalyst may have the vanadia structure of incomplete polymeric two-dimensional network that possesses the Ti-O-V-OH groups at edges showing strong Brönsted acidity with the initial heat of about 140 kJ mol-1 for ammonia adsorption. On the other hand, the 10%V2O5/TiO2 catalyst may have well defined polymeric two-dimensional vanadia network, possessing V-O-V-OH groups that exhibit rather weak Brönsted acidity with the heat of 90 kJ mol-1 for NH3 adsorption. V2O5 crystallites are formed on the 25%V2O5/TiO2 catalyst, which exhibit the acid properties similar to those for 25%V2O5 on SiO2 and γ-Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Wainwright and N. R. Foster, Catal. Rev. Sci. Eng., 19 (1979) 211.

    CAS  Google Scholar 

  2. V. Nikolov, D. Kissurski and A. Anastasov, Catal. Rev. Sci. Eng., 33 (1991) 1.

    Google Scholar 

  3. F. Cavalli, F. Cavani, I. Manenti and F. Trifirò, Catal. Today, 1 (1987) 245.

    Article  CAS  Google Scholar 

  4. M. Sanati and A. Anderson, J. Mol. Catal., 59 (1990) 233.

    Article  CAS  Google Scholar 

  5. H. Bosch and F. Janssen, Catal. Today, 2 (1988) 369.

    Article  CAS  Google Scholar 

  6. J. Svachula, L. J. Alemany, N. Feriazzo, P. Forzatti, E. Tronconi and F. Bregani, Ind. Eng. Chem. Res., 32 (1993) 826.

    Article  CAS  Google Scholar 

  7. W. I. Prins and Z. L. Numinga, Catal. Today, 16 (1993) 187.

    Article  CAS  Google Scholar 

  8. E. A. Mamedov and V. C. Corberan, Appl. Catal. A, 127 (1995) 1; and H. H. Kung, Adv. Catal., 40 (1994) 1.

    Article  CAS  Google Scholar 

  9. W. Harding, K. R. Birkel and H. H. Kung, Catal. Lett., 28 (1994) 1; and L. Owens and H. H. Kung, J. Catal., 148 (1994) 587.

    Article  Google Scholar 

  10. A. Ramsetter and M. Baerns, J. Catal., 109 (1988) 303.

    Article  Google Scholar 

  11. N. T. Do and M. Baerns, Appl. Catal., 45 (1988) 1.

    Article  CAS  Google Scholar 

  12. P. M. Michalakos, K. Birkeland and H. H. Kung, J. Catal., 158 (1996) 349.

    Article  CAS  Google Scholar 

  13. G. Deo and I. E. Wachs, J. Catal., 146 (1994) 323.

    Article  CAS  Google Scholar 

  14. P. Forzatti, E. Tronconi, G. Busca and P. Tittarelli, Catal. Today, 1 (1987) 2089.

    Article  Google Scholar 

  15. G. C. Bond and S. F. Tahir, Appl. Catal., 71 (1991) 1.

    Article  CAS  Google Scholar 

  16. G. T. Went, S. T. Oyama and A. T. Bell, J. Phys. Chem., 94 (1990) 4240.

    Article  CAS  Google Scholar 

  17. I. E. Wachs, R. Y. Saleh, S. S. Chan and C. C. Chersich, Appl. Catal., 15 (1985) 339.

    Article  CAS  Google Scholar 

  18. J. Haber, A. Kozlowska and R. Kozlowski, J. Catal., 102 (1986) 52.

    Article  CAS  Google Scholar 

  19. F. Arena, N. Giordano and A. Parmaliana, J. Catal., 166 (1997) 66.

    Article  Google Scholar 

  20. S. T. Oyama, G. T. Went, K. B. Lewis, A. T. Bell and G. A. Somorjai, J. Phys. Chem., 93 (1989) 6786.

    Article  CAS  Google Scholar 

  21. M. M. Kantcheva, L. I. Hadjiivanov and D. G. Klissurski, J. Catal., 134 (1992) 299.

    Article  Google Scholar 

  22. T. Kataoka and J. A. Dumesic, J. Catal., 112 (1988) 66.

    Article  CAS  Google Scholar 

  23. I. E. Wachs, Catal. Today, 27 (1996) 437.

    Article  CAS  Google Scholar 

  24. A. M. Turek and I. E. Wachs, J. Phys. Chem., 96 (1992) 5000.

    Article  CAS  Google Scholar 

  25. G. Busca, F. Ramis and V. Lorenzelli, J. Mol. Catal., 50 (1989) 231.

    Article  CAS  Google Scholar 

  26. J. Datka, A. M. Turek, J. M. Jehng and I. E. Wachs, J. Catal., 135 (1992) 186.

    Article  CAS  Google Scholar 

  27. H. Miyata, K. Fuji and T. Ono, J. Chem. Soc., Faraday Trans., 84 (1988) 3121.

    Article  CAS  Google Scholar 

  28. J. Shen, R. D. Cortright, Y. Chen and J. A. Dumesic, J. Phys. Chem., 98 (1994) 8067.

    Article  CAS  Google Scholar 

  29. A. Khodakov, B. Olthof, A. T. Bell and E. Iglesia, J. Catal., 181 (1999) 205.

    Article  CAS  Google Scholar 

  30. J. Tauc, in Amorphous and Liquid Semiconductors, Tauc, J., Ed., Plenum Press, London 1974, p. 171.

    Google Scholar 

  31. R. S. Weber, J. Catal., 151 (1995) 470.

    Article  CAS  Google Scholar 

  32. E. Iglesia, D. G. Barton, S. L. Soled, S. Miseo, J. E. Baumgartner, W. E. Gates, G. A. Fuentes and G. D. Meitznerm, Stud. Surf. Sci. Catal., 101 (1996) 533.

    Article  CAS  Google Scholar 

  33. A. Khodakov, J. Yang, S. Su, E. Iglesia and A. T. Bell, J. Catal., 177 (1998) 343.

    Article  CAS  Google Scholar 

  34. A. P. Alivasatos, Science, 271 (1996) 933.

    Google Scholar 

  35. R. F. Service, Science, 271 (1996) 920.

    CAS  Google Scholar 

  36. M. L. Good, Spectrochim. Acta A, 29 (1973) 707.

    Article  Google Scholar 

  37. H. So and M. T. Pope, Inorg. Chem., 11 (1972) 1441.

    Article  CAS  Google Scholar 

  38. M. Iwamoto, H. Furukawa, K. Matsukami, T. Takenaka and S. Kagawa, J. Am. Chem. Soc., 105 (1983) 3719.

    Article  CAS  Google Scholar 

  39. H. Ronde and J. G. Snijders, Chem. Phys. Lett., 50 (1977) 282.

    Article  CAS  Google Scholar 

  40. J. Shen, R. D. Cortright, Y. Chen and J. A. Dumesic, Catal. Lett., 26 (1994) 247.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, H., Li, M., Shen, J. et al. Surface acidity of supported vanadia catalysts. Journal of Thermal Analysis and Calorimetry 72, 209–221 (2003). https://doi.org/10.1023/A:1023984106581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023984106581

Navigation