Skip to main content
Log in

Interaction of transforming growth factor-β (TGF-β) and epidermal growth factor (EGF) in human glioma cells

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Gliomas are characterized by a deregulation of growth factor production and growth factor receptors expression, e.g. overproduction of the cytokine transforming growth factor-β (TGF-β) and overexpression/constitutive activation of receptors for the epidermal growth factor (EGF). Potential interactions of such growth factors and their signaling cascades could enhance the malignancy of these tumors. Therefore, we investigated the effects of TGF-β and EGF alone and in combination on the proliferation of glioma cells cultivated from eight solid human WHO grade IV gliomas and one glioma cell line, analyzed the expression and intactness of the TGF-β-signaling molecules Samd-4 and -2, and the phosphorylation of the EGF-signaling kinases ERK 1/2. The effects were divergent and complex: Whereas EGF mostly stimulated glioma cell proliferation, TGF-β either enhanced, inhibited or had no significant effect on proliferation. In combination, co-stimulation and inhibition of the EGF-induced mitogenic activity could be observed. Smad-4/-2 were expressed in all glioma cells, one point mutation at base 1595 in Smad-4 did not affect its protein sequence. In part of the glioma cells, reduced phosphorylation of ERK 1/2 and expression of cyclin-dependent kinase inhibitor 1 or p21 was observed in co-stimulation experiments. These experiments show that TGF-β can inhibit EGF-mediated effects only in some gliomas, whereas it enhances it in others. The interaction of both factors is very complex and varies between different gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böttner M, Krieglstein K, Unsicker K: The TGF-βs: structure, signaling and roles in nervous system development and functions. J Neurochem 75: 2227-2240, 2000

    Google Scholar 

  2. Gold LI: The role of transforming growth factor-β (TGF-β) in human cancer. Crit Reviews in Oncogenesis 10: 303-360, 1999

    Google Scholar 

  3. Massague J: Receptors for the TGF-β family. Cell 69: 1067-1070, 1992

    Google Scholar 

  4. Massague J: TGF-β signaling: receptors, transducers, and MAD proteins. Cell 85: 947-950, 1996

    Google Scholar 

  5. Derynck R, Zhang Y, Feng XH: Smads - transcriptional activators of TGF-β response. Cell 95: 737-740, 1989

    Google Scholar 

  6. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Rickardson MA, Topper JN, Gimbrone Jr MA, Wrana JL, Falb D: The MAD-related protein Smad7 associates with the TGF-β receptor and functions as an antagonist of TGF-β signaling. Cell 89: 1165-1173, 1997

    Google Scholar 

  7. Zhang Y, Musci T, Derynck R: The tumor suppressor Smad4/DPC4 as a central mediator of Smad function. Curr Biol 7: 270-276, 1997

    Google Scholar 

  8. Hata A, Shi Y, Massague J: TGF-β signaling and cancer - structural and functional consequences of mutations in Smads. Mol Med Today 4: 257-262, 1998

    Google Scholar 

  9. Reiss M: TGF-β and cancer. Microbes and Infection 1: 1327-1347, 1999

    Google Scholar 

  10. Hahn S A, Schutte M, Hoque AT, Moskaluk CA, DaCosta LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE: DPC4 a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271: 350-353,1996

    Google Scholar 

  11. Nagatake M, Takagi Y, Osada H, Uchida K, Mitsudomi T, Saji S, Shimotaka K, Takahashi T: Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. Cancer Res 56: 2718-2720, 1996

    Google Scholar 

  12. Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H, Sidransky D, Caserojr RA, Meltzer PS, Hahn SA, Kern SE: DPC4 gene in various tumor types. Cancer Res 56: 2527-2530, 1996

    Google Scholar 

  13. Takagi Y, Kohmura H, Futamura M, Kida H, Tanemura H, Shimokawa K, Saji S: Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterology 111: 1369-1372, 1996

    Google Scholar 

  14. Humphrey PA, Gangarosa LM, Wong AJ, Archer GE, Lund-Johansen M, Bjerkvig R, Laerum OD, Friedman HS, Bigner DD: Deletion-mutant epidermal growth factor receptor in human gliomas: effects of type II mutation on receptor function. Biochem Biophys Res Commun 178: 1413-1420, 1991

    Google Scholar 

  15. Kuan C-T, Wikstrand CJ, Bigner DD: EGF mutant receptor vIII as a molecular target in cancer therapy. Endocrinerelated Cancer 8: 83-96, 2001

    Google Scholar 

  16. Feindt J, Becker I, Blömer U, Hugo H-H, Mehdorn HM, Krisch B, Mentlein R: Expression of somatostatin receptor subtypes in cultured astrocytes and gliomas. J Neurochem 65: 1997-2005, 1995

    Google Scholar 

  17. Held-Feindt J, Krisch B, Mentlein R: Molecular analysis of the somatostatin receptor subtype 2 in human glioma cells. Mol Brain Res 64: 101-107, 1999

    Google Scholar 

  18. Held-Feindt J, Forstreuter F, Pufe T, Mentlein R: Influence of the somatostatin receptor sst2 on growth factor signal cascades in human glioma cells. Mol Brain Res 87: 12-21, 2001

    Google Scholar 

  19. Mentlein R, Eichler O, Forstreuter F, Held-Feindt J: Somatostatin inhibits the production of vascular endothelial growth factor (VEGF) in glioma cells. Int J Cancer 92: 545-550, 2001

    Google Scholar 

  20. Bodmer S, Strommer K, Frei K, Siepl C, De Tribolet N, Heid I, Fontana A: Immunosuppression and transforming growth factor-? in glioblastoma. Preferential production of transforming growth factor-β 2. J Immunol 143: 3222-3229, 1989

    Google Scholar 

  21. Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Heldin CH, Funa K: Enhanced expression of transforming growth factor-β and its type-I and type-II receptors in human glioblastomas. Int J Cancer 62: 386-392, 1995

    Google Scholar 

  22. Jennings MT, Maciunas RJ, Carver R, Bascom CC, Juneaz P, Misulis K, Moses HL: TGF-β1 and TGF-β2 are potential growth regulators for low-grade and malignant gliomas in vitro: evidence in support of an autocrine hypothesis. Int J Cancer 49: 129-139, 1991

    Google Scholar 

  23. Isoe S, Naganuma H, Nakano S, Sasaki A, Satoh E, Nagasaka M, Maeda S, Nukui H: Resistence to growth inhibition by transforming growth factor-β in malignant glioma cells with functional receptors. J Neurosurg 88: 529-534, 1998

    Google Scholar 

  24. Markowitz SD & Roberts AB: Tumor suppressor activity of the TGF-? pathway in human cancer. Cytokine Growth Factor Rev 7: 93-102, 1996

    Google Scholar 

  25. Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, Whittle N, Waterfield MS, Ullrich A, Schlessinger J: Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumors of glial origin. Nature 313: 144-147, 1985

    Google Scholar 

  26. Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP: Genes for epidermal growth factor receptors, transforming growth factor α, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51: 2164-2172, 1991

    Google Scholar 

  27. Frederick L, Wang XY, Eley G, James CD: Diversity and frequency of epidermal growth factor mutations in human glioblastomas. Cancer Res 60: 1383-1387, 2001

    Google Scholar 

  28. McLendon RE, Wikstrand CJ, Matthews MR, Al-Baradei R, Bigner SH, Bigner DD: Glioma-associated antigen expression in oligodendroglial neoplasms. J Histochem Cytochem 48: 1103-1110, 2000

    Google Scholar 

  29. Prigent SA, Nagane M, Lin H, Huvar I, Boss GR, Feramisco JR, Cavenee WK, Huang H-JS: Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras-Shc-Grb2 pathway. J Biol Chem 271: 25639-25645, 1996

    Google Scholar 

  30. Feindt J, Schmidt A, Mentlein R: Receptors and effects of the inhibitory neuropeptide somatostatin in microglial cells. Mol Brain Res 60: 228-233, 1998

    Google Scholar 

  31. Sehgal, A: Molecular changes during the genesis of human gliomas. Semin Surg Oncol 14: 3-12, 1998

    Google Scholar 

  32. Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjögren H-O, Widegren B: Expression of TGF-β isoforms, TGF-β receptors, and Smad molecules at different stages of human glioma. Int J Cancer 89: 251-258, 2000

    Google Scholar 

  33. Piek E, Westermark U, Kastemar M, Heldin C-H, Van Zoelen EJ, Nister M, Ten Dijke P: Expression of transforming growth-factor (TGF)-β receptors and Smad proteins in glioblastoma cell lines with distinct responses to TGF-β1. Int J Cancer 80: 756-763, 2000

    Google Scholar 

  34. Jachimczak P, Hessdörfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen K-H, Bauer A, Blesch A, Bogdahn U: Transforming growth factor-β-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisence oligonucleotides. Int J Cancer 65: 332-337, 1996

    Google Scholar 

  35. Jennings MT, Hart CE, Commers PA, Whitlock JA, Martinic D, Maciunas RJ, Moots PL, Shehab TM: Transforming growth factor-β as a potentail tumor progression factor among hyperdiploid glioblastoma cultures: evidence for the role of platelet-derived growth factor. J Neuro-Oncol 31: 233-254, 1997

    Google Scholar 

  36. Kurimoto M, Endo S, Arai K, Horie Y, Nogami K, Takaku A: TM-1 cells from an established human malignant glioma cell line produce PDGF, TGF-α, and TGF-β which cooperatively play a stimulatory role for an autocrine growth promotion. J Neuro-Oncol 22: 33-44, 1994

    Google Scholar 

  37. Zhang Y & Derynck R: Regulation of Smad signaling by protein associations and signaling crosstalk. Trends Cell Biol 9: 274-279, 1999

    Google Scholar 

  38. Massague J & Chen YG: Controlling TGF-? signaling. Genes Dev 14: 627-644, 2000

    Google Scholar 

  39. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ: TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412: 285-286, 2001

    Google Scholar 

  40. Mulder KM: Role of Ras and MAPKs in TGF-β signaling. Cytokine Growth Factor Rev 11: 23-35, 2000

    Google Scholar 

  41. Lo RS, Wotton D, Massague J: Epidermal growth factor signaling via Ras controls the Smad transcriptionell co-repressor TGIF. EMBO J 20: 128-136, 2001

    Google Scholar 

  42. Kretzschmar M, Doody J, Timokhina I, Massague J: A mechanism of repression of TGF-β/Smad signaling by oncogenic Ras. Genes Dev 13: 804-816, 1999

    Google Scholar 

  43. Rich JN, Zhang M, Datto MB, Bigner DD, Wang X-F: Transforming growth-factor-β-mediated p15INK4B induction and growth inhibition in astrocytes is Smad3-dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem 274: 35053-35058, 1999

    Google Scholar 

  44. Feng XH, Lin X, Derynck R: Smad2, Smad3, and Smad4 cooperate with SP1 to induce p15(Ink4B) transcription in response to TGF-β. EMBO J 19: 5178-5193, 2000

    Google Scholar 

  45. Pardali K, Kurisaki A, Moren A, Dijke PT, Kardassis D, Moustakas A: Role of Smad proteins and transcription factor SP1 in p21WAF-(super1)/Cip-(super1) regulation by transforming growth factor-β. J Biol Chem 275: 29244-29256,2000

    Google Scholar 

  46. Ständer M, Naumann U, Wick W, Weller M: Transforming growth factor-β and p21: multiple molecular targets of decorin mediated suppression of neoplastic growth. Cell Tissue Res 296: 221-227, 1999

    Google Scholar 

  47. Adany R, Heimer R, Caterson B, Sorrell JM, Iozzo RV: Altered expression of chondroitin sulfate proteoglycan in the stroma of human colon carcinoma. Hypomethylation of PG-40 gene correlates with increased PG-40 content and mRNA levels. J Biol Chem 265: 11389-11396, 1990

    Google Scholar 

  48. Iozzo RV, Murdoch AD: Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J 10: 598-614, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Held-Feindt, J., Lütjohann, B., Ungefroren, H. et al. Interaction of transforming growth factor-β (TGF-β) and epidermal growth factor (EGF) in human glioma cells. J Neurooncol 63, 117–127 (2003). https://doi.org/10.1023/A:1023943405292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023943405292

Navigation