Skip to main content
Log in

Studied on a novel human keratinocyte membrane delivery system in vitro

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The culture of keratinocytes on flexible membranes has been proposed as a means to simplify, accelerate and improve the efficiency with which proliferating cells are delivered to full thickness or non-healing skin defects. The purpose of this article was to study the ability of chitosan-gelatin manbranes to facilitate the growth of human keratinocytes. The membranes with different chitosan contents were studied. The surface properties of chitosan-gelatin membranes were investigate by SEM, and water contact angle test. The mechanical property of the membranes was tested. Data implied that gelatin could make the membranes more flexible and hydrophilic than chitosan membranes, which may regulate the seeded cells behavior. Loading human keratinocytes on chitosan-gelatin membranes, cells attachment, spread, and growth were investigated by light microscopy, SEM, and MTT test. The results suggested that the adhesion and proliferation of keratinocytes seeded on chitosan-gelatin membranes were same as on tissue culture plate, in which gelatin could modify the interaction between keratinocytes and chitosan membranes. Therefore, chitosan-gelatin membrane is a good candidate for keratinocytes delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Navsaria, S. R. Myers, I. M. Leigh and I. A. Mckay, Trends in Biotechnology 15 (1995) 91.

    Google Scholar 

  2. A. M. Munster, S. H. Weiner and R. J. Spence, Ann. Surg. 211 (1990) 676.

    Google Scholar 

  3. R. L. Sheridan M. Hegarty, R. G. Tompkins and J. F. Burke, Eur. J. Plast. Surg. 17 (1994) 91.

    Google Scholar 

  4. Y. Poumay and M. R. Pittelkow, Journal of Investigative Dernatology 104(2) (1995) 271.

    Google Scholar 

  5. I. Mckay, B. Woodward, K. Wood, H. A. Navsaria, H. Hoekstra and C. Green, Burns 20(1) (1994) S19.

    Google Scholar 

  6. P. A. Harris, ibid. 24 (1998) 591.

    Google Scholar 

  7. Y. Barlow, A. Burt, H. A. Clarke, D. A. Mcgrouther and S. M. Lang, J. Tissue Viability 2 (1992) 33.

    Google Scholar 

  8. K. A. Wright, K. B. Nadire, P. Busto, P. Tubo, J. M. Mcpherson and B. M. Wentworth, Burns 24 (1998) 7.

    Google Scholar 

  9. E. Matouskova, S. Bucek and D. Vogrova, Br. J. Derma. 136(6) (1997) 901.

    Google Scholar 

  10. S. R. Myers, J. Grady and C. Soranzo, et al. J. Burn. Care. Reh. 18 (1997) 214.

    Google Scholar 

  11. E. Pianigiani, A. Andreassi, P. Taddeucci, C. Alessandrini, M. Fimiani and L. Andreassi, Biomaterials 20 (1999) 1689.

    Google Scholar 

  12. A. Domard and M. Rinaudo, Int. J. Biol. Macromol 5 (1983) 49.

    Google Scholar 

  13. R. A. A. Muzzarelli, First International Conference of the European Chitin Society, Advances in Chitin Science Brest (1995) p. 448.

  14. S. H. Pangburn, P. V. Trescony and H. Heller, Biomaterials 3 (1982) 105.

    Google Scholar 

  15. R. A. A. Muzzarelli, Carbohydr. Polym 20 (1993) 7.

    Google Scholar 

  16. P. J. Rose, H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges and J. I. Kroschwitz, (eds.), “Encyclopedia of Polymer Science and Engineering,” Vol. 7, 2nd ed. (Wiley, New York, USA 1989) p. 488.

    Google Scholar 

  17. M. Chvapil, J. Biomed Mater Res. 11 (1977) 721.

    Google Scholar 

  18. M. Chvapil, ibid. 16 (1982) 245.

    Google Scholar 

  19. Y. J. Yin, K. D. Yao, G. X. Cheng and J. B. Ma, Polym. Int. 48 (1999) 429.

    Google Scholar 

  20. T. Mossman, J. Immunol. Methods 65 (1983) 55.

    Google Scholar 

  21. K. D. Yao, H. L. Tu, F. Cheng, J. W. Zhang and J. Liu, Die. Ange. Makro. Chemie. 245 (1997) 63.

    Google Scholar 

  22. K. Webb, V. Hlady and P. A. Tresco, J. Biomed. Mater. Res. 41 (1998) 422.

    Google Scholar 

  23. G. Chang, D. R. Absolom, A. B. Strong, G. D. Stubley and W. Zingg, ibid. 22 (1998) 13.

    Google Scholar 

  24. M. Izume, T. Taira, T. Kimura and T. Miyata, in “Chitin and Chitosan,” edited by G. Skjak-Braëk, T. Anthonsen and P. Sandford (Elsevier Applied Science, Amsterdam, 1989) p. 653.

    Google Scholar 

  25. C. Chatelat, O. Damour and A. Domard, Biomaterials 22 (2001) 261.

    Google Scholar 

  26. D. Ingber, S. Karp, J. Plopper, L. Hansen and D. Mooney, in “Physical Forces and Mammalian Cell” (Academic Press. New York, 1993) Chap. 2.

    Google Scholar 

  27. R. Rajaraman, D. E. Rounds, S. P. S. Yen and A. Rembaum, Exp. Cell. Research 88 (1974) 327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, J.S., Wang, X.H., De Yao, K. et al. Studied on a novel human keratinocyte membrane delivery system in vitro. Journal of Materials Science 38, 2283–2290 (2003). https://doi.org/10.1023/A:1023777525447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023777525447

Keywords

Navigation