Skip to main content
Log in

Ozone Production in the Negative DC Corona: The Dependence of Discharge Polarity

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The rate of production and the spatial distribution of ozone in the negative DC corona discharge are predicted with a numerical model. The results are compared to prior experimental data and to results previously presented by the authors for the positive corona discharge. In agreement with experimental data, ozone production rate in the negative corona is an order of magnitude higher than in the positive corona. The model reveals that this significant difference is due to the effect of discharge polarity on the number of energetic electrons in the corona plasma. The number of electrons is one order of magnitude greater and the chemically reactive plasma region extends beyond the ionization region in the negative corona. The paper also extends our prior modeling effort to lower velocities where the Joule heating reduces ozone production. The magnitude of the reduction is characterized by a new dimensionless parameter referred to as the electric Damkohler's third number(DaIII–e).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Chen and J. H. Davidson, Plasma Chem. Plasma Process. 22, 495–522 (2002).

    Google Scholar 

  2. K. Boelter and J. H. Davidson, Aerosol Sci. Technol. 27, 689–708 (1997).

    Google Scholar 

  3. A. S. Viner, P. A. Lawless, D. S. Ensor, and L. E. Sparks, IEEE Trans. Ind. Appl. 28, 504–512 (1992).

    Google Scholar 

  4. M. B. Awad and G. S. P. Castle, J. Air Pol. Con. Assoc. 25, 369–374 (1975).

    Google Scholar 

  5. T. Ohkubo, S. Hamasaki, Y. Nomoto, J. S. Chang, and T. Adachi, IEEE Trans. Ind. Appl. 26, 542–549 (1990).

    Google Scholar 

  6. K. Nashimoto, J. Imaging Sci. 32, 205–210 (1988).

    Google Scholar 

  7. J. Chen and J. H. Davidson, Plasma Chem. Plasma Process. 22, 199–224 (2002).

    Google Scholar 

  8. J. Chen and J. H. Davidson, Plasma Chem. Plasma Process. 23, 83–102 (2003).

    Google Scholar 

  9. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakkov, Plasma Sources Sci. Technol. 1, 207–220 (1992).

    Google Scholar 

  10. R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, M. J. Rossi, and J. Troe, J. Phy. Chem. Ref. Data 26, 521(1997).

    Google Scholar 

  11. S. P. Sander, R. R. Friedl, W. B. De More, D. M. Golden, M. J. Kurylo, R. F. Hampson, R. E. Huie, G. K. Moortgat, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling (NASA Panel for Data Evaluation, Evaluation Number 13, 2000).

  12. W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling (NASA Panel for Data Evaluation, Evaluation Number 12, JPL Publication 97–4, 1997).

  13. H. Sugimitsu and S. Okazaki, J. de chimie physique 79, 655–660 (1982).

    Google Scholar 

  14. A. R. De Sousa, M. Touzeau, and M. Petitdidier, Chem. Phys. Lett. 121, 423–428 (1985).

    Google Scholar 

  15. J. T. Herron, J. Phys. Chem. Ref. Data 28, 1453(1999).

    Google Scholar 

  16. M. P. Iannuzzi, J. B. Jeffries, and F. Kaufman, Chem. Phys. Lett. 87, 570–574 (1982).

    Google Scholar 

  17. E. U. Condon and H. Odishaw, Handbook of Physics (McGraw-Hill, New York, 1967).

    Google Scholar 

  18. G. S. P. Castle, I. I. Inculet, and K. I. Burgess, IEEE Trans. Ind. Gen. Appl. IGA-5, 489–496 (1969).

    Google Scholar 

  19. G. Damkohler, Influence of Diffusion, Flow and Heat Trans. the Yield in Chemical-Technical Reactions. (Translated from German by Collier, D. W., Princeton, NJ, 1960s).

  20. M. Zlokarnik, Dimensional Analysis and Scale-up in Chemical Engineering (Springer-Verlag, New York, 1991).

    Google Scholar 

  21. F. W. Peek, Dielectric Phenomena in High-Voltage Engineering, 3rd ed. (McGraw-Hill, New York, 1929).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Davidson, J.H. Ozone Production in the Negative DC Corona: The Dependence of Discharge Polarity. Plasma Chemistry and Plasma Processing 23, 501–518 (2003). https://doi.org/10.1023/A:1023235032455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023235032455

Navigation