Skip to main content
Log in

Model-Reference Fuzzy Adaptive Control as a Framework for Nonlinear System Control

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The paper presents a general methodology of adaptive control based on fuzzy model to deal with unknown plants. The problem of parameter estimation is solved using a direct approach, i.e. the controller parameters are adapted without explicitly estimating plant parameters. Thus, very simple adaptive and control laws are obtained using Lyapunov stability criterion. The generality of the approach is substantiated by Stone-Weierstrass theorem, which indicates that any continuous function can be approximated by fuzzy basis function expansion. In the sense of adaptive control, this implies the adaptive law with fuzzified adaptive control parameters. The proposed control algorithm may be viewed as an extension of classical adaptive control for linear plants, but compared to the latter it provides higher adaptation ability and consequently better performance if the plant is nonlinear. The global stability of the control system is assured and the tracking error converges to the residual set that depends on fuzzification properties. The main advantage of the approach is simplicity that suits control engineers since wide range of industrial processes can be controlled by the proposed method. In the paper, the control of heat exchanger is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abonyi, J., Andersen, H., Nagy, L., and Szeifert, F.: Inverse fuzzy-process-model based direct adaptive control, Math. Comput. Simul. 51(1/2) (1999), 119-132.

    Google Scholar 

  2. Berstecher, R. G., Palm, R., and Unbehauen, H. D.: An adaptive fuzzy sliding-mode controller, IEEE Trans. Industr. Electron. 48(1) (2001), 18-31.

    Google Scholar 

  3. Castro, J.: Fuzzy logic controllers are universal approximators, IEEE Trans. Systems Man Cybernet. (1995), 629-635.

  4. Fink, A., Fischer, M., Nelles, O., and Isermann, R.: Supervision of nonlinear adaptive controllers based on fuzzy models, Control Engrg. Practice 8(10) (2000), 1093-1105.

    Google Scholar 

  5. Goldberg, R. R.: Methods of Real Analysis, Wiley, New York, 1976.

    Google Scholar 

  6. Hanson, M. A. and Seborg, D. E.: Adaptive nonlinear control of pH neutralization process, IEEE Trans. Control Systems Technol. 2(3) (1994).

  7. Ioannou, P. A. and Kokotovic, P. V.: Instability analysis and improvement of robustness of adaptive control, Automatica 20(5) (1984), 583-594.

    Google Scholar 

  8. Ioannou, P. A. and Sun, J.: Theory and design of robust direct and indirect adaptive-control schemes, Internat. J. Control 47(3) (1988), 775-813.

    Google Scholar 

  9. Ioannou, P. A. and Sun, J.: Robust Adaptive Control, Prentice-Hall, Englewood Cliffs,NJ, 1996.

    Google Scholar 

  10. Ioannou, P. A. and Tsakalis, K. S.: A robust direct adaptive controller, IEEE Trans. Automat. Control 31(11) (1986), 1033-1043.

    Google Scholar 

  11. Jagannathan, S., Lewis, F. L., and Pastravanu, O.: Model reference adaptive control of nonlinear dynamical systems using multilayer neural networks, in: Proc. of IEEE Internat. Conf. on Neural Networks, Vol. 7, 1994, pp. 4766-4711.

    Google Scholar 

  12. Krstic, M., Kanellakopoulos, I., and Kokotovic, P.: Nonlinear and Adaptive Control Design, Wiley, New York, 1995.

    Google Scholar 

  13. Narendra, K. S. and Annaswamy, A. M.: Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989.

    Google Scholar 

  14. Narendra, K. S. and Annaswamy, A. M.: Robust adaptive control in presence of bounded disturbance, IEEE Trans. Automat. Control 31 (1985), 306-315.

    Google Scholar 

  15. Narendra, K. S. and Balakrishnan, J.: Adaptive control using multiple models, IEEE Trans. Automat. Control 42(2) (1997), 171-187.

    Google Scholar 

  16. Narendra, K. S. and Parthasarathy, K.: Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks 1(1) (1990), 4-27.

    Google Scholar 

  17. Narendra, K. S. and Valavani, L. S.: Stable adaptive controller design - Direct control, IEEE Trans. Automat. Control 23 (1979), 570-583.

    Google Scholar 

  18. Narendra, K. S. and Valavani, L. S.: Direct and indirect model reference adaptive control, Automatica 15 (1979), 653-664.

    Google Scholar 

  19. Ortega, R. and Tang, Y.: Robustness of adaptive controllers - A survey, Automatica 25(5) (1989), 651-677.

    Google Scholar 

  20. Passino, K. M. and Yurkovich, S.: Fuzzy Control, Addison-Wesly, Reading, MA, 1998.

    Google Scholar 

  21. Richalet, J.: Industrial application of model based predictive control, Automatica 29(5) (1993), 1251-1274.

    Google Scholar 

  22. Rohrs, C. E., Valavani, L., Athans, M., and Stein, G.: Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics, IEEE Trans. Automat. Control 30(9) (1985), 881-889.

    Google Scholar 

  23. Spooner, J. T. and Passino, K. M.: Stable adaptive control using fuzzy systems and neural networks, IEEE Trans. Fuzzy Systems 4(3) (1996).

  24. Takagi, T. and Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control, IEEE Trans. Systems Man Cybernet. 15 (1985), 116-132.

    Google Scholar 

  25. Wang, L. X.: Stable adaptive fuzzy control of nonlinear systems, IEEE Trans. Fuzzy Systems 1(2) (1993), 146-155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Škrjanc, I., Blažič, S. & Matko, D. Model-Reference Fuzzy Adaptive Control as a Framework for Nonlinear System Control. Journal of Intelligent and Robotic Systems 36, 331–347 (2003). https://doi.org/10.1023/A:1023089005353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023089005353

Navigation