Skip to main content
Log in

Small-Mass Behavior of Quantum Gibbs States for Lattice Models with Unbounded Spins

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We construct the distribution of the infinite-dimensional Markov process associated with a finite-temperature Gibbs state for a quantum mechanical anharmonic crystal. The corresponding state is constructed via a cluster expansion technique for an arbitrary fixed temperature and, correspondingly, small enough masses of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. E. Tibballs, R. J. Nelmes, and G. J. McIntyre, The crystal structure of tetragonal KH2PO4 and KD2PO4 as a function of temperature and pressure, J. Phys. C: Solid State Phys. 15:37-58 (1982).

    Google Scholar 

  2. T. Schneider, H. Beck, and E. Stoll, Quantum effects in an n-component vector model for structural phase transitions, Phys. Rev. B 13:1123-1130 (1976).

    Google Scholar 

  3. A. D. Bruce and R. A. Cowley, Structural Phase Transitions (Taylor and Francis Ltd, 1981).

  4. A. Verbeure and V. A. Zagrebnov, No-go theorem for quantum structural phase transitions, J. Phys. A: Math. Gen. 28:5415-5421 (1995).

    Google Scholar 

  5. S. Albeverio, Yu. G. Kondratiev, and Yu. V. Kozitsky, Suppression of critical fluctuations by strong quantum effects in quantum lattice systems, Commun. Math. Phys. 194:493-512 (1998).

    Google Scholar 

  6. R. A. Minlos, A. Verbeure, and V. A. Zagrebnov, A quantum crystal model in the light mass limit: Gibbs state, KUL-Preprint (1997).

  7. S. Albeverio and R. Høegh-Krohn, Homogeneous random fields and statistical mechanics, J. Funct. Anal. 19:242-272 (1975).

    Google Scholar 

  8. V. S. Barbulyak and Yu. G. Kondratiev, Functional integrals and quantum lattice systems: Existence of Gibbs states, Reports Nat. Acad. Sci. Of Ukraine 8:31-37 (1991).

    Google Scholar 

  9. D. Brydges and P. A. Federbush, A new form of the Mayer expansion in classical statistical mechanics, J. Math. Phys. 19:2064-2067 (1978).

    Google Scholar 

  10. D. Brydges, A rigorous approach to Debye screening in dilute classical Coulomb systems, Commun. Math. Phys. 58:313-350 (1978).

    Google Scholar 

  11. A. Yu, Kondratiev and A. L. Rebenko, Cluster expansions of Brydges-Federbush type for quantum lattice systems, Methods Funct. Anal. and Topology 2(3):59-68 (1996).

    Google Scholar 

  12. S. Albeverio, R. Høegh-Krohn, and B. Zegarlinski, Uniqueness of Gibbs states for general P(ω)2-weak coupling models by cluster expansion, Common. Math. Phys. 121:683-697 (1989).

    Google Scholar 

  13. S. Albeverio, Yu. G. Kondratiev, T. V. Tsikalenko, and M. Röckner, Uniqueness of Gibbs states for quantum lattice systems, Probab. Theory Relat. Fields 108:193-218 (1997)

    Google Scholar 

  14. G. A. Battle III, A new combinatoric estimate for cluster expansions, Common. Math. Phys. 94:133-139 (1984).

    Google Scholar 

  15. S. Albeverio, Yu. G. Kondratiev, and Yu. V. Kozitsky, Quantum hierarchical model, Methods Funct. Anal. and Topology 2:1-35 (1996), see also: Absence of critical points for a class of quantum hierarchical models, Commun. Math. Phys. 187:1–18 (1997).

    Google Scholar 

  16. F. J. Dyson, E. H. Lieb, and B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Stat. Phys. 18:335-383 (1978).

    Google Scholar 

  17. G. A. Battle III and P. Federbush, A note on cluster expansions, tree graph identities, extra 1/N! factors!!!, Lett. Malls. Phys. 8:55-57 (1984).

    Google Scholar 

  18. V. A. Malyshev and R. A. Minlos, Gibbs Random Fields, The Cluster Expansion Method (Kluwer, Dordrecht, 1991).

    Google Scholar 

  19. V. I. Gerasimenko, P. V. Malyshev, and D. Ya. Petrina, Mathematical Foundation of Classical Statistical Mechanics. Continuous Systems (Gordon and Breach Science, New York/London/Paris, 1989).

    Google Scholar 

  20. D. Ruelle, Statistical Mechanics. Rigorous Results (Benjamin, New York/Amsterdam, 1963).

    Google Scholar 

  21. J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View (Springer-Verlag, 1987).

  22. A. L. Rebenko, Mathematical foundations of equilibrium classical statistical mechanics of charged particles, Russ. Math. Surveys 43:55-97 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albeverio, S., Kondratiev, Y.G., Minlos, R.A. et al. Small-Mass Behavior of Quantum Gibbs States for Lattice Models with Unbounded Spins. Journal of Statistical Physics 92, 1153–1172 (1998). https://doi.org/10.1023/A:1023009130254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023009130254

Navigation