Skip to main content
Log in

Tryptamine-Induced Resistance in Tryptophan Decarboxylase Transgenic Poplar and Tobacco Plants Against Their Specific Herbivores

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The presence of amines and their derivatives in plant tissues is known to influence insect feeding and reproduction. The enzyme tryptophan decarboxylase (TDC) catalyzes the decarboxylation of tryptophan to tryptamine, which is both a bioactive amine and a precursor of other indole derivatives. Transgenic poplar and tobacco plants ectopically expressing TDC1 accumulated elevated levels of tryptamine without affecting plant growth and development. This accumulation was consistently associated with adverse effects on feeding behavior and physiology of Malacosoma disstria Hub. (forest tent caterpillar, FTC) and Manduca sexta L. (tobacco hornworm, THW). Behavior studies with FTC and THW larvae showed that acceptability of the leaf tissue to larvae was inversely related to foliar tryptamine levels. Physiological studies with FTC and THW larvae showed that consumption of leaf tissue from the transgenic lines is deleterious to larvae growth, apparently due to a postingestive mechanism. Thus, ectopic expression of TDC1 can allow sufficient tryptamine to accumulate in poplar and tobacco leaf tissue to suppress significantly the growth of insect pests that normally feed on these plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts, R. J., Snoeijer, W., Aerts-Teerlink, O., van der Meijder, E., and Verpoorte, R. 1991. Control and biological implications of alkaloid synthesis in Cinchona seedlings. Phytochemistry 30:3571–3577.

    Google Scholar 

  • Aerts, R. J., Stoker, A., Beishuizen, M., Jaarsma, I., van der Heuvel, M., van der Meijden, E., and Verpoorte, R. 1992. Detrimental effects of Cinchona leaf alkaloids on larvae of the polyphagous insect Spodoptera exigua. J. Chem. Ecol. 18:1955–1964.

    Google Scholar 

  • Argandona, V. H., Luza, J. G., Niemeyer, H. M., and Corcuera, L. J. 1980. Role of hydroxamic acids in the resistance of cereals to aphids. Phytochemistry 19:1665–1668.

    Google Scholar 

  • Bomford, M. K. and Isman, M. B. 1996. Desensitization of fifth instar Spodoptera litura to azadirachtin and neem. Entomol. Exp. Appl. 81:307–313.

    Google Scholar 

  • Corcuera, L. J. 1984. Effects of indole alkaloids from gramineae on aphids. Phytochemistry 23:539–541.

    Google Scholar 

  • Cornu, D., Leple, J-C., Bonnade-Bottino, M., Ross, A., Augustin, S., Delplangue, A., Jouanin, L., and Pilate, G. 1996. Expression of a proteinase inhibitor and a Bacillus thuringiensis δ-endotoxin in transgenic poplars, pp. 131–136, in M. R. Ahuja, W. Boerjan, and D. B. Neal (Eds.). Somatic Cell Genetics and Molecular Genetics of Trees. Kluwer, Dordrecht.

    Google Scholar 

  • Csaba, G. 1993. Presence in and effects of pineal indoleamines at very low level of phylogeny. Experientia 49: 627–634.

    Google Scholar 

  • Eigenbrode, S. D., Shelton, A. M., and Dickson, M. H. 1990. Two types of resistance to the diamondback moth (Lepidoptera: Plutellidae) in cabbage. Environ. Entomol. 19:1086–1090.

    Google Scholar 

  • Ellis, D., Meilan, R., Pilate, G., and Skinner, J. S. 2001. Transgenic trees: Where are we now? pp. 113–123, in S.H. Strauss and H.D. Bradshaw (Eds.). Proceedings of the First International Symposium on Ecological and Societal Aspects of Transgenic Plantations, Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • Farrar, R. R., Barbour, J. D., and Kennedy, G. G. 1989. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82: 593–598.

    Google Scholar 

  • Grisdale, D. G. 1976. Laboratory methods for rearing the forest tent caterpillar. Can. For. Serv. Sault Ste. Marie, ON, Bi-Mon. Res. Notes 32:1.

    Google Scholar 

  • Harrell, M. O., Benjamin, D. M., Berbee, J. G., and Burkot, T. R. 1982. Consumption and utilization of leaf tissue of tissue-cultured Populus x euramericana by the cottonwood leaf beetle, Chrysomela scripta (Coleoptera: Chrysomelidae). Can. Entomol. 114:743–749.

    Google Scholar 

  • Hemming, J. D. C. and Lindroth, R. L. 2000. Effects of phenolic glycosides and proteins on gypsy moth (Lepidoptera: Lymantriidae) and forest tent caterpillar (Lepidoptera: Lasiocampidae) performance and detoxication activities. Environ. Entomol. 29:1108–1115.

    Google Scholar 

  • Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F., and Boulter, D. 1987. A novel mechanism of insect resistance engineered in tobacco. Nature 330:160–163.

    Google Scholar 

  • Isman, M. B., Koul, O., Luczynski, A., and Kaminski, J. 1990. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J. Agric. Food Chem. 38:1406–1411.

    Google Scholar 

  • Johnson, R., Narvaez, J., An, G., and Ryan, C. A. 1989. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larva. Proc. Natl. Acad. Sci. USA 86:9871–9875.

    Google Scholar 

  • Kleiner, K. W., Ellis, D. D., McCown, B. H., and Raffa, K. F. 1995. Field evaluation of transgenic poplar expressing a Bacillus thuringiensis cry1A(a) δ-endotoxin gene against forest tent caterpillar (Lepidoptera: Lasiocampidae) and gypsy moth (Lepidoptera: Lymantriidae) following winter dormancy. Environ. Entomol. 24:1358–1364.

    Google Scholar 

  • Meilan, R., Ma, C., Cheng, S., Eaton, J. A., Miller, L. K., Crockett, R. P., DiFazio, S. P., and Strauss, S. H. 2000. High levels of RoundupTM and leaf-beetle resistance in genetically engineered hybrid cottonwoods, pp. 29–38, in K. A. Blatner, J. D. Johnson and D. M. Baumgartner (Eds.). Hybrid Poplars in the Pacific Northwest: Culture, Commerce and Capability. Washington State University Cooperative Extension Bulletin MISC0272, Pullman, Washington.

    Google Scholar 

  • Miles, D. H., Ly, A. M., Randle, S. A., Hedin, P. A., and Burks, M. L. 1987. Alkaloidal insect antifeedants from Virola calophylla Warb. J. Agric. Food Chem. 35:794–797.

    Google Scholar 

  • Perlak, F. J., Deaton, R. W., Armstrong, T. A., Fuchs, R. L., Sims, S. R., Greenblate, J. T., and Fischoff, D. A. 1990. Insect resistant cotton. Bio/Technology 8:939–943.

    Google Scholar 

  • Robinson, D. J. and Raffa, K. F. 1990. Hybrid poplar productivity and suitability for the forest tent caterpillar: a framework for evaluation, pp. 155–162, in R. D. Adams (ed.). Aspen Symposium '89. Proceedings of Symposium. USDA Forest Service. General Technical Report. NC–140.

  • Sogawa, K. 1971. Preliminary assay of antifeeding chemicals for the brown planthopper, Nilaparvata lugens (Stal.) (Hemiptera: Delphacidae). Appl. Entomol. Zool. 6:215–218.

    Google Scholar 

  • Schroeder, L. A. and Lawson, J. 1992. Temperature effects on the growth and dry matter budgets of Malacosoma americanum. J. Insect Physiol. 38:743–749.

    Google Scholar 

  • Schoonhoven, L. M. 1982. Biological aspects of antifeedants. Entomol. Exp. Appl. 31:57–69.

    Google Scholar 

  • Songstad, D. D., De Luca, V., Brisson, N., Kurz, W. G. W., and Nessler, C. L. 1990. High levels of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase. Plant Physiol. 94:1410–1413.

    Google Scholar 

  • Thomas, J. C., Adams, D. G., Nessler, C. L., Brown, J. K., and Bohnert, H. J. 1995. Tryptophan decarboxylase, tryptamine and reproduction of the whitefly (Bemisia tabaci). Plant Physiol. 109:717–720.

    Google Scholar 

  • Thomas, J. C., Saleh, E. F., Alammar, N., and Akroush, A. M. 1998. The indole alkaloid tryptamine impairs reproduction in Drosophila melanogaster. J. Econ. Entomol. 91:841–846.

    Google Scholar 

  • Vehovszky, A. and Walker, R. J. 1991. An analysis of the 5-hydroxytryptamine (serotonin) receptor subtypes of central neurons of Helix aspersa. Comp. Biochem. Physiol. C 100:463–476.

    Google Scholar 

  • Voelckel, C., Krugel, T., Gase, K., Heidrich, N., van Dam, N. M., Winz, R., and Baldwin, I. T. 2001. Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta. Chemoecology 11:121–126.

    Google Scholar 

  • Wang, G., Castiglion, S., Chen, Y., Li, L., Han, Y., Tian, Y., Gabriel, D. W., Mang, K., and Sala, F. 1996. Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgenic Res. 5:289–301.

    Google Scholar 

  • Wood, C. S. 1992. Forest tent caterpillar. Forest Pest Leaflet No. 17. Forestry Canada, Victoria, BC, Forest Insect and Disease Survey, 4pp.

  • Xie, Y. S. and Isman, M. B. 1992. Antifeedant and growth inhibitory effects of tall oil and derivatives against the variegated cutworm, Peridroma saucia Hubner (Lepidoptera: Noctuidae). Can. Entomol. 124:861–869.

    Google Scholar 

  • Xie, Y. S., Isman, M. B., Gunning, P., Mackinnon, S., Arnason, J. T., Taylor, D. R., Sanchez, P., Hasbun, C., and Towers, G. H. N. 1994. Biological activity of extracts of Trichilia species and the limonoid hirtin against lepidopteran larvae. Biochem. Syst. Ecol. 22:129–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murray B. Isman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gill, R.I.S., Ellis, B.E. & Isman, M.B. Tryptamine-Induced Resistance in Tryptophan Decarboxylase Transgenic Poplar and Tobacco Plants Against Their Specific Herbivores. J Chem Ecol 29, 779–793 (2003). https://doi.org/10.1023/A:1022983529555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022983529555

Navigation