Skip to main content
Log in

Experimental and Theoretical Study of the Impact of Alumina Droplets on Cold and Hot Substrates

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A complex experimental set-up was built to study the impact of liquid alumina droplets on different substrates (stainless steel 304L, sintered alumina, carbon–carbon) kept at temperatures up to 2100 K. The impact behavior: rebound, deposition, splashing, spattering was systematically studied as well as the resulting splat shapes. The set-up consists in a controlled atmosphere chamber where molten alumina particles with diameters between 10 and 90 μm, are produced by a d.c. plasma torch, substrates being heated by a second d.c. plasma torch. In such conditions, it was possible to achieve particle temperatures between 2300 and 4200 K with velocities in the range 50 to 300 m/s. The particle behavior at impact was characterized by the Sommerfeld parameter K (K=We1/2 Re1/4 We and Re being respectively the Weber and Reynolds numbers of impacting particles). It was possible to vary K between 3 and 1300. Low K values were obtained by tilting the substrate up to 60°. The parameters of a single particle at impact were measured: its velocity vp and diameter dp by Phase Doppler Anemometry (Δvp=5%, Δdp=10%) and its temperature Tp by fast (100 ns) two color pyrometry (ΔTp=15%). The particle impact was visualized by a fast camera coupled to a microscope (exposure delay time 50 ns . . .100 ms) with complex synchronization and light intensity problems. To solve the latter, the impacting particle had to be illuminated with a 2 W c.w. Ar+ laser at 488 nm. Unfortunately, the controlled atmosphere chamber did not allow to change the substrate after each particle impact. Starting from a smooth surface for the first impact, due to the successively deposited splats, rapidly droplets impacted on a rough surface (Ra∼5 μm).

• For splats collected on a hot alumina substrate (2100 K), where flattening is completed before solidification starts (case similar to that of ethanol droplets on cold copper) deposition occurs for K between 4 and 90 while splashing occurs for K as low as 30. These results are slightly different from those related to the ethanol droplet for which deposition occurs for 3<K<57.7 and splashing for K>57.7. This could be due to the precision of measured values and the rough surface.

• For splats collected in spraying conditions splashing is always the rule K values up to 1400) especially on rough surfaces. However the particle impact velocity and temperature, the substrate temperature and tilting plays an important role on the resulting splat diameters, distortion and elongation rates. The question which is still pending is which quantity of splashed material is incorporated within the constructing coating and how does it affect its thermophysical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. E. Hinckle, Appl. Eng. Agric. 5, 386–391 (1979).

    Google Scholar 

  2. J. L. Zable, J. Res. Develop. 21, 315–320 (1997).

    Google Scholar 

  3. L. H. Wachters and N. A. J. Westerling, Chem. Ing. Sci. 21, 1047–1056 (1966).

    Google Scholar 

  4. O. Engel, J. Appl. Phys. 38, 3935–3940 (1967).

    Google Scholar 

  5. L. Bianchi, F. Blein, P. Lucchese, M. Vardelle, A. Vardelle, and P. Fauchais, in Thermal Spray Industrial Applications (C. C. Berndt and S. Sampath, eds.), ASM International, Materials Park, Ohio, USA, 1995, pp. 569–574.

    Google Scholar 

  6. L. Bianchi, P. Lucchese, A. Denoirjean, and P. Fauchais, in Advances in Thermal Spray Science and Technology (C. C. Berndt and S. Sampath, eds.), ASM International, Ohio, 1995, pp. 261–266.

    Google Scholar 

  7. L. Bianchi, A. Grimaud, F. Blein, P. Lucchese, and P. Fauchais, J. Thermal Spray Technol. 4, 59–66 (1995).

    Google Scholar 

  8. A. C. Leger, M. Vardelle, A. Vardelle, P. Fauchais, S. Sampath, C. C. Berndt, and H. Herman, in Thermal Spray: Practical Solutions for Engineering Problems (C. C. Berndt, ed.), ASM International, Ohio, 1996, pp. 623–628.

    Google Scholar 

  9. S. Sampath, J. Matejicek, C. C. Berndt, H. Herman, A. C. Leger, M. Vardelle, A. Vardelle, and P. Fauchais, in Thermal Spray: Practical Solutions for Engineering Problems (C. C. Berndt, ed.), ASM International, Ohio, 1996, pp. 629–636.

    Google Scholar 

  10. L. Bianchi, A. C. Leger, M. Vardelle, A. Vardelle, and P. Fauchais, Thin Solid Films 305, 35–47 (1997).

    Google Scholar 

  11. L. Bianchi, A. Denoirjean, and P. Fauchais, Thin Solid Films 299, 125–135 (1997).

    Google Scholar 

  12. C. J. Li, J. L. Li, W. B. Wang, A. Ohmori, and K. Tani, in Thermal Spray: Meeting the Challenges of the 21st Century (C. Coddet, ed.) ASM International, Ohio, 1998, pp. 481–487.

    Google Scholar 

  13. S. Sampath, X. Y. Jiang, J. Matejicek, A. C. Leger, and A. Vardelle, Materials Sci. Engng. A272, 181–188 (1999).

    Google Scholar 

  14. A. Vardelle, C. Moreau, and P. Fauchais, MRS Bulletin, July, 32–37 (2000).

  15. N. Cesco, Study and modeling of a two phase flow inside a powder booster (in French), PhD, Ecole Nationale Supérieure de l'Aéronautique et de l'Escape, Toulouse, Nov. 1997.

  16. F. Kappei, B. Platet, A. C. Tournayre, and G. Lavergne, Contribution to the study of impact of droplets on a wall or a liquid film (in French), Technical Report No. RT1/5400.29, Toulouse, 1999.

  17. C. Mundo, M. Sommerfeld, and C. Tropea, Experimental studies of deposition and splashing of small liquid droplets impinging on a flat surface, ICLASS-94, Ruoen, Paper I-18, 1994.

  18. C. Mundo, M. Sommerfeld, and C. Tropea, Int. J. Multiphase Flow 21, 151–173 (1995).

    Google Scholar 

  19. G. Lavergne and B. Platet, Study of the impact of droplets on a heated wall (in French), Final Report, Nbl/2401/CERT/DERMES, 1991.

  20. P. Fauchais, A. Vardelle, and B. Dussoubs, J. Thermal Spray Technol. 10, 44–66 (2001).

    Google Scholar 

  21. P. Fauchais, A. Vardelle, M. Vardelle, A. Denoirjean, B. Pateyron, and M. El Ganaoui, in Thermal Spray 2001: New Surface for a New Millennium (C. C. Berndt, K. A. Khor, and E. F. Lugsheider, eds.) ASM International, Ohio, 2001, pp. 865–874.

    Google Scholar 

  22. M. Fukumoto, S. Katoh, and I. Okane, in Thermal Spraying: Current Status and Future Trends (A. Ohmori, ed.), Society of High Temp. of Japan, 1995, pp. 353–358.

  23. M. Fukumoto, Y. Huang, and M. Ohwatari, in Thermal Spray: Meeting the Challenges of the 21st Century (C. Coddet, ed.), ASM International, Ohio, 1998, pp. 401–406.

    Google Scholar 

  24. M. Pasandideh-Fard and J. Mostaghimi, in Thermal Spray: Practical Solutions for Engineering Problems (C. C. Berndt, ed.), ASM International, Ohio, 1996, pp. 637–646.

    Google Scholar 

  25. M. Pasandideh-Fard, J. Mostaghimi, and S. Chandra, in Thermal Spray: Surface Engineering via Applied Research (C. C. Berndt, ed.), ASM International, Ohio, 2000, pp. 125–134.

    Google Scholar 

  26. M. Bussmann, J. Mostaghimi, and S. Chandra, Physics of Fluids 11, 1406–1417 (1999).

    Google Scholar 

  27. V. Pershin, I. Thomson, S. Chandra, and J. Mostaghimi, in Thermal Spray: Surface Engineering via Applied Research (C. C. Berndt, ed.), ASM International, Ohio, 2000, pp. 813–820.

    Google Scholar 

  28. V. Pershin, I. M. Pasandideh-Fard, J. Mostaghimi, and S. Chandra, in Thermal Spray 2001: New Surface for a New Millennium (C. C. Berndt, K. A. Khor, and E. F. Lugsheider, eds.), ASM International, Ohio, 2001, pp. 813–820.

    Google Scholar 

  29. R. Ghafouri-Azar, J. Motaghimi, and S. Chandra, in Thermal Spray 2001: New Surface for a New Millennium, (C. C. Berndt, K. A. Khor, and E. F. Lugsheider, eds.), ASM International, Ohio, 2001, pp. 951–958.

    Google Scholar 

  30. M. Vardelle, A. Vardelle, A. C. Leger, and P. Fauchais, J. Thermal Spray Technol. 4, 50–58 (1995).

    Google Scholar 

  31. H. Fukanuma, in Thermal Spray: Practical Solutions for Engineering Problems (C. C. Berndt, ed.), ASM International, Ohio, 1996, pp. 647–656.

    Google Scholar 

  32. V. Sobolev, in Thermal Spray: Meeting the Challenges of the 21st Century, (C. Coddet, ed.), ASM International, Ohio, 1998, pp. 507–510.

    Google Scholar 

  33. J. Pech, B. Hannoyer, A. Denoirjean, and P. Fauchais, in Thermal Spray: Surface Engineering via Applied Research (C. C. Berndt, ed.), ASM International, Ohio, 2000, pp. 759–765.

    Google Scholar 

  34. M. Fukumoto, E. Nishivka, and T. Nishiyama, in Thermal Spray 2001: New Surface for a New Millennium, (C. C. Berndt, K. A. Khor, and E. F. Lugsheider, eds.), ASM International, Ohio, 2001, pp. 841–848.

    Google Scholar 

  35. O. Engel, J. Applied Phys. 38, 3935–3940 (1967).

    Google Scholar 

  36. B. Platet and G. Lavergne, Characterization of the interaction phenomenon droplet wall (in French), 3rd Symposium Research and Technology, Internal flows in solid propellants 2, 231–242 (1998).

    Google Scholar 

  37. J. F. Coudert, M. P. Planche, and P. Fauchais, Plasma Chem. Plasma Process 15, 47–70 (1996).

    Google Scholar 

  38. M. Vardelle, A. Vardelle, and P. Fauchais, J. Thermal Spray Technol. 2, 79–91 (1993).

    Google Scholar 

  39. M. Vardelle, A. Vardelle, P. Fauchais, and C. Moreau, Meas. Sci. Technol. 5, 205–215 (1994).

    Google Scholar 

  40. B. Glorieux, J. C. Rifflet, C. Pulvin, F. Millot, and J. P. Coutures, Thermodynamic properties of liquid alumina (in French), Technical note NT1-phC-ASSM6 CRPHT/CNRS, May 1997.

  41. P. Fauchais and A. Vardelle, Int. J. Therm. Sci. 39, 852–870 (2000).

    Google Scholar 

  42. G. Mariaux, P. Fauchais, A. Vardelle, and B. Pateyron, J. High Temp. Mater. Process. 5, 61–85 (2001).

    Google Scholar 

  43. A. Vardelle, P. Fauchais, B. Dussoubs, and N. J. Themelis, Plasma Chem. Plasma Process. 18, 551–574 (1998).

    Google Scholar 

  44. M. Boulos, P. Fauchais, and E. M. Pfender, Thermal Plasmas Fundamental and Applications, Vol. 1, Plenum Press, NY, London, 1994.

    Google Scholar 

  45. C. R. Wilkes, J. Chem. Phys. 18, 517–519 (1950).

    Google Scholar 

  46. E. A. Mason and S. C. Sucena, The Physics of Fluids 1, 361–369 (1958).

    Google Scholar 

  47. C. H. Chang and J. D. Ramshaw, Phys. Plasmas 1, 3698, 3708 (1994).

    Google Scholar 

  48. Ph. Roumilhac, J. F. Coudert, and P. Fauchais, in Plasma Process. and Synthesis of Materials (D. Apelian and J. Szekely, eds.), MRS, Pittsburgh 190, 227–238 (1990).

    Google Scholar 

  49. O. Betoule, G. Soucy, M. Vardelle, P. Fauchais, M. Boulos, and M. Ducos, in Thermal Spray: Int. Advances in Coating Technology (C. Berndt, ed.), ASM International, Ohio, 1992, pp. 773–779.

    Google Scholar 

  50. A. B. Murphy, Phys. Rev. E 55, 7473–7494 (1997).

    Google Scholar 

  51. P. Gougeon and C. Moreau, J. of Thermal Spray Technol. 10, 76–82 (2001).

    Google Scholar 

  52. A. Vardelle, M. Vardelle, P. Fauchais, and D. Gobin, NATO Series E: Applied Sciences 282, 95–121 (1995).

    Google Scholar 

  53. M. P. Kanouff, R. A. Neiser, and T. R. Roemer, J. Thermal Spray Technol. 7, 219–228 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escure, C., Vardelle, M. & Fauchais, P. Experimental and Theoretical Study of the Impact of Alumina Droplets on Cold and Hot Substrates. Plasma Chemistry and Plasma Processing 23, 185–221 (2003). https://doi.org/10.1023/A:1022976914185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022976914185

Navigation