Skip to main content
Log in

Chemically induced residual stresses in dental composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In several European countries, dental composites are replacing mercury-containing amalgams as the most common restorative materials. One problem with dental composites is residual stresses which may lead to poor performance of the restoration. In the present study, a combined modeling and materials characterization approach is presented and predictions compare well with experimental data on residual stresses. The model takes stress relaxation into account through the complete relaxation time spectrum of the resin. The approach allows for detailed parametric studies where resin and composite composition as well as cure conditions may be tailored with respect to residual stress generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lingois and L. Berglund, J. Mater. Sci., submitted.

  2. J. Hickman, P. H. Jacobsen, A. Wilson and J. Middleton, Clinical Materials 7 (1991) 39.

    Google Scholar 

  3. P. F. HÜbsch, J. Middleton, J. S. Rees and P. H. Jacobsen, J. Biomed. Eng. 15 (1993) 401.

    Google Scholar 

  4. T. R. Katona and M. M. Winkler, J. Dent. Res. 73 (1994) 1470.

    Google Scholar 

  5. T. R. Katona, M. M. Winkler and J. J. Huang, Biomed. Mat. Res. 31 (1996) 445.

    Google Scholar 

  6. M. M. Winkler, T. R. Katona and N. H. Paydar, J. Dent. Res. 75 (1996) 1477.

    Google Scholar 

  7. J. S. Rees and P. H. Jacobsen, J. Dent. 26 (1998) 361.

    Google Scholar 

  8. P. F. HÜbsch, J. Middleton and J. Knox, Biomaterials 21 (2000) 1015.

    Google Scholar 

  9. A. Maffezoli, R. Terzi and L. Nicolais, J. Mater. Sci. Mater. Med. 6 (1995) 155.

    Google Scholar 

  10. J. M. Kenny, A. Maffezzoli and L. Nicolais, Compos. Sci. Tech. 38 (1990) 339.

    Google Scholar 

  11. J. G. Kloosterboer and G. F. C. M. Lijten, Polym. Commun. 28 (1987) 2.

    Google Scholar 

  12. T. G. Fox and S. Loshaek, J. Polym. Sci. 15 (1955) 371.

    Google Scholar 

  13. D. Alperstein, M. Narkis, A. Siegman and B. Binder, Polym. Eng. Sci. 35 (1995) 754.

    Google Scholar 

  14. A. J. Feilzer, A. J. de Gee and C. L. Davidson, J. Dent. Res. 69 (1990) 36.

    Google Scholar 

  15. J. D. Ferry, in “Viscoelastic Properties of Polymers,” 3rd ed. (Wiley, New York, 1980) ch. 11.A.

    Google Scholar 

  16. R. M. Christensen, in “Theory of Viscoelasticity: An Introduction,” 2nd ed. (Academic Press, New York, 1982) ch. 4.

    Google Scholar 

  17. Y. K. Kim and S. R. White, Polym. Eng. Sci. 36 (1996) 2852.

    Google Scholar 

  18. A. R. Gallant, in “Nonlinear Statistical Models” (JohnWiley &; Sons, New York, 1987).

    Google Scholar 

  19. S. W. Beckwith, J. Spacecraft 21 (1984) 546.

    Google Scholar 

  20. T. A. Bogetti and J. W. Jr. Gillespie, J. Comp. Mater. 26 (1992) 626.

    Google Scholar 

  21. M. Levitsky and B. W. Shaffer, J. Appl. Mech. 41 (1974) 647.

    Google Scholar 

  22. B. W. Shaffer and M. Levitsky, ibid. 41 (1974) 652.

    Google Scholar 

  23. M. Levitsky and B. W. Shaffer, ibid. 42 (1975) 651.

    Google Scholar 

  24. B. W. Rosen and Z. Hashin, Int. J. Eng. Sci. 8 (1970) 157.

    Google Scholar 

  25. Z. Hashin, J. Appl. Mech. 29 (1962) 143.

    Google Scholar 

  26. Z. Hashin, Int. J. Solids Structures 1970; 6:539-552.

    Google Scholar 

  27. A. Plepys, M. S. Vratsanos and R. J. Farris, J. Composite Structures 27 (1994) 51.

    Google Scholar 

  28. J. Lange, Polym. Eng. Sci. 39 (1999) 1651.

    Google Scholar 

  29. D. Alperstein, S. Narkis, A. Siegmann and B. Binder, ibid. 35 (1995) 754.

    Google Scholar 

  30. J. K. Gillham, J. A. Benci and A. Noshay, J. Appl. Polym. Sci. 18 (1974) 951.

    Google Scholar 

  31. D. J. Plazek, J. Polym. Sci., Part A-2 4 (1966) 745.

    Google Scholar 

  32. Y.-W. Chan and J. J. Aklonis, J. Appl. Phys. 54 (1983) 6690.

    Google Scholar 

  33. J. G. Curro and P. Pincus, Macromolecules 16 (1983) 559.

    Google Scholar 

  34. D. Adolf and J. E. Martin, ibid. 23 (1990) 3700.

    Google Scholar 

  35. J. Lange, A. Hult and J.-A. E. M.Ånson, Polymer 37 (1996) 5859.

    Google Scholar 

  36. M. Kinkelaar and L. J. Lee, in Proceedings of the 46th Annual Conference of Composites Institute, February 1991, edited by The Society of the Plastics Industry Inc., session 6-A, p. 1.

  37. O. Sindt, S. L. Simon, G. B. McKenna and E. Liang, in Proceedings of the 56th Annual Technical Conference, ANTEC, April 1998, edited by Soc. Plast. Eng. Brookfield CT, USA, p. 1658.

  38. A. J. Kovacs, J. Polym. Sci. 30 (1958) 131.

    Google Scholar 

  39. C. A. Bero and D. J. Plazek, J. Polym. Sci.; Part B: Polym. Phy. 29 (1991) 39.

    Google Scholar 

  40. A. Espinoza and J. J. Aklonis, Polym. Eng. Sci. 33 (1993) 486.

    Google Scholar 

  41. R. S. Marvin and J. E. McKinney, in“Physical Acoustics” Vol. II B, edited by W. P. Mason (Academic Press, New York, 1975) p. 165.

    Google Scholar 

  42. A. R. Kannurpatti and C. N. Bowman, Macromolecules 31 (1998) 3311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lingois, P., Berglund, L., Greco, A. et al. Chemically induced residual stresses in dental composites. Journal of Materials Science 38, 1321–1331 (2003). https://doi.org/10.1023/A:1022811315807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022811315807

Keywords

Navigation