Skip to main content
Log in

The Involvement of Dopamine in Strengthening Cortical Signals Activating NMDA Receptors in the Striatum (a hypothetical mechanism)

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

A possible mechanism is proposed for the enhancement/weakening of those cortical signals in the cortex-basal ganglia-thalamus-cortex neural network which induce/do not induce opening of NMDA channels in the spiny neurons of the striatum and which can be regarded as “strong”/“weak” in terms of this measure. The mechanism is based on the modulatory influences of dopamine on changes in the efficiency of corticostriatal inputs. In the absence of dopamine, relative increases in the intensity of “strong” (“weak”) cortical signals can lead to the induction of long-term potentiation (depression) of corticostriatal synapses. In this case, because of the differently directed influences on thalamic cells of signals passing via strionigral and striopallidal cells, “strong” signals at the output of the thalamus are weakened, while “weak” signals are strengthened. Activation of dopamine D1 (D2) receptors on strionigral (striopallidal) neurons may facilitate increases in the extent of long-term potentiation/depression (decreases in the extent of long-term potentiation/depression or induction of long-term potentiation/depression). The consequence of this is that “strong” signals at the output of the thalamus can be strengthened synergistically, while “weak” signals cab be weakened synergistically. Background cortical signals evoking tonic release of dopamine in the striatum can decrease strengthening because of weakening of the modulatory influence of dopamine on the modification of corticostriatal synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. B. Murzina and I. G. Sil'kis, “Studies of long-term potentiation and depression of inhibitory transmission using mathematical modeling of postsynaptic processes,” Zh. Vyssh. Nerv. Deyat., 46, No. 5, 917–928 (1996).

    Google Scholar 

  2. I. G. Sil'kis, “General principles of synaptic plasticity in the neocortex, hippocampus, and cerebellum,” Zh. Vyssh. Nerv. Deyat., 47, No. 2, 374–392 (1997).

    Google Scholar 

  3. I. G. Sil'kis, “Interconnected processes in striatal neurons induced by activation of excitatory, inhibitory, and dopamine inputs,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, No. 5, 507–518 (2000).

    Google Scholar 

  4. I. G. Sil'kis, “A unifying mechanism for plasticity in the striatum, neocortex, hippocampus, and cerebellum,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, No. 5, 519–531 (2000).

    Google Scholar 

  5. I. G. Sil'kis, “A possible mechanism for the dopamine-evoked synergistic disinhibition of thalamic neurons via the 'direct' and 'indirect' pathways in the basal ganglia,” Zh. Vyssh. Nerv. Deyat., 50, No. 6, 899–912 (2000).

    Google Scholar 

  6. N. F. Suvorov, “General questions of the functioning of the basal ganglia,” Ros. Fiziol. Zh. im. I. M. Sechenova, 80, No. 1, 3–8 (1994).

    Google Scholar 

  7. K. B. Shapovalova, “Activation of the cholinergic system of the striatum improves attention to conditioned reflex stimuli,” Ros. Fiziol. Zh. im. I. M. Sechenova, 84, No. 7, 589–602 (1998).

    Google Scholar 

  8. V. T. Shuvaev, “The basal ganglia and behavior,” Ros. Fiziol. Zh. im. I. M. Sechenova, 85, No. 9-10, 1216–1229 (1999).

    Google Scholar 

  9. G. E. Alexander and M. D. Crutcher, “Functional architecture of basal ganglia circuits: neural substrates of parallel processing,” Trends Neurol., 13, No. 7, 266–271 (1990).

    Google Scholar 

  10. P. Calabresi, P. Gubellini, D. Centonze, G. Sancesario, M. Morello, M. Giorgi, A. Pisani, and G. Bernardi, “A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression,” J. Neurosci., 19, No. 7, 2489–2499 (1999).

    Google Scholar 

  11. P. Calabresi, R. Maj, N. B. Mercuri, and G. Bernardi, “Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum,” Neurosci. Lett., 142, No. 1, 95–99 (1992).

    Google Scholar 

  12. P. Calabresi, A. Saiardi, A. Pisani, J. H. Baik, D. Centonze, N. B. Mercuri, G. Bernardi, and E. Borrelli, “Abnormal synaptic plasticity in the since the striatum of mice lacking dopamine D2 receptors,” J. Neurosci., 17, No. 12, 2536–4544 (1997).

    Google Scholar 

  13. C. Cepeda, C. S. Colwell, J. N. Itri, S. H. Chandler, and M. S. Levine, “Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal slices: contribution of calcium conductances,” J. Neurophysiol. 79, No. 1, 82–94 (1998).

    Google Scholar 

  14. C. Cepeda, C. S. Colwell, J. N. Itri, E. Gruen, and M. S. Levene, “Dopaminergic modulation of early signs of excitotoxicity in visualized rat neostriatal neurons,” Eur. J. Neurosci., 10, No. 11, 3491–3497 (1998).

    Google Scholar 

  15. C. Cepeda and M. S. Levine, “Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum,” Dev. Neurosci., 20, No. 1, 1–18 (1998).

    Google Scholar 

  16. S. Charpier and J. M. Deniau, “In vivo activity-dependent plasticity at cortico-striatal connections: evidence for physiological long-term potentiation,” Proc. Natl. Acad. Sci. USA, 94, No. 13, 7036–7040 (1997).

    Google Scholar 

  17. P. Greengard, P. B. Allen, and A. C. Nairn, “Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade,” Neuron, 23, No. 3, 435–447 (1999).

    Google Scholar 

  18. L. G. Harsing, Jr. and M. J. Zigmond, “Influence of dopamine on GABA release in striatum: evidence for D1-D2 interactions and nonsynaptic influences,” Neurosci., 77, No. 2, 419–429 (1997).

    Google Scholar 

  19. A. Hernandes-Lopez, J. Bargas, D. J. Surmeier, A. Reyes, and E. Gallabraga, “D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+-conductance,” J. Neurophysiol., 17, No. 39, 3334–3342 (1997).

    Google Scholar 

  20. C. J. Price, P. Kim, and L. A. Raymond, “D1 dopamine receptorinduced cyclic AMP-dependent protein kinase phosphorylation and potentiation of striatal glutamate receptors,” J. Neurochem. (USA), 73, No. 6, 2441–2446 (1999).

    Google Scholar 

  21. A. N. Schoffelmeer, L. J. Vanderschuren, T. J. De Vries, F. Hogenboom, G. Wardeh, and A. H. Mulder, “Synergistically interacting dopamine D1 and NMDA receptors mediate nonvesicular transporter-dependent GABA release from rat striatal medium spiny neurons,” J. Neurosci., 20, No. 9, 3496–3502 (2000).

    Google Scholar 

  22. I. G. Silkis, “The unitary modification rules for neural networks with excitatory and inhibitory synaptic plasticity,” Biosystems, 48, No. 1-3, 205–213 (1998).

    Google Scholar 

  23. I. G. Silkis, “synaptic plasticity in the cortico-basal ganglia-thalamocortical circuit. I. Modification rules for excitatory and inhibitory synapses in the striatum,” Biosystems, 57, No. 3, 187–196 (2000).

    Google Scholar 

  24. I. G. Silkis, “The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia,” Biosystems (in press) (2001).

  25. Y. Smith, M. D. Bevan, E. Shink, and J. P. Bolam, “Microcircuitry of the direct and indirect pathways of the basal ganglia,” Neurosci., 86, No. 2, 353–387 (1998).

    Google Scholar 

  26. W. Timmerman, F. Westerhof, T. I. van-der-Wal, and B. H. Westerink, “Striatal dopamine-glutamate interactions reflected in substantia nigra reticulata firing,” Neuroreport, 9, No. 17, 3829–3836 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sil'kis, I.G. The Involvement of Dopamine in Strengthening Cortical Signals Activating NMDA Receptors in the Striatum (a hypothetical mechanism). Neurosci Behav Physiol 33, 379–386 (2003). https://doi.org/10.1023/A:1022803825498

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022803825498

Navigation