Skip to main content
Log in

The G1 Restriction Point as Critical Regulator of Neocortical Neuronogenesis

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuronogenesis in the pseudostratified ventricular epithelium is the initial process in a succession of histogenetic events which give rise to the laminate neocortex. Here we review experimental findings in mouse which support the thesis that the restriction point of the G1 phase of the cell cycle is the critical point of regulation of the overall neuronogenetic process. The neuronogenetic interval in mouse spans 6 days. In the course of these 6 days the founder population and its progeny execute 11 cell cycles. With each successive cycle there is an increase in the fraction of postmitotic cells which leaves the cycle (the Q fraction) and also an increase in the length of the cell cycle due to an increase in the length of the G1 phase of the cycle. Q corresponds to the probability that postmitotic cells will exit the cycle at the restriction point of the G1 phase of the cell cycle. Q increases non-linearly, but the rate of change of Q with cycle (i.e., the first derivative) over the course of the neuronogenetic interval is a constant, k, which appears to be set principally by cell internal mechanisms which are species specific. Q also seems to be modulated, but at low amplitude, by a balance of mitogenic and antimitogenic influences acting from without the cell. We suggest that intracellular signal transduction systems control a general advance of Q during development and thereby determine the general developmental plan (i.e., cell number and laminar composition) of the neocortex and that external mitogens and anti-mitogens modulate this advance regionally and temporally and thereby produce regional modifications of the general plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sauer, F.C. 1935. Mitosis in the neural tube. J. Comp. Neurol. 62:377-405.

    Google Scholar 

  2. Boulder Committee. 1970. Embryonic vertebrate nervous system: revised terminology. Anat. Rec. 166:257-262.

    Google Scholar 

  3. Takahashi, T., Nowakowski, R.S., and Caviness, V.S.Jr. 1992. BUdR as an S-phase marker for quantitative studies of cytokinetic behaviour in the murine cerebral ventricular zone. J. Neurocytol. 21:185-197.

    Google Scholar 

  4. Takahashi, T., Nowakowski, R.S., and Caviness, V.S. Jr. 1995. The cell cycle of the pseudostratified ventricular epithelium of the murine cerebral wall. J. Neurosci. 15:6046-6057.

    Google Scholar 

  5. Takahashi, T., Nowakowski, R.S., and Caviness, V.S.Jr. 1996. The leaving or Q fraction of the murine cerebral proliferative epithelium: a general computational model of neocortical neuronogenesis. J. Neurosci. 16:6183-6196.

    Google Scholar 

  6. Walsh, C., and Cepko, C.L. 1990. Cell lineage and cell migration in the developing cerebral cortex. Experientia. 46:940-947.

    Google Scholar 

  7. Mione, M.C., Danevic, C., Boardman, P., Harris, B., and Parnavelas, J.G. 1994. Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons. J. Neurosci. 14:107-123.

    Google Scholar 

  8. Rakic, P. 1988. Specification of cerebral cortical areas. Science. 241:170-176.

    Google Scholar 

  9. Miyama, S., Takahashi, T., Nowakowski, R.S., and Caviness, V.S. Jr. 1997. A Gradient in the duration of the G1 phase in the murine neocortical proliferative epithelium. Cereb. Cortex. 7:678-689.

    Google Scholar 

  10. Takahashi, T., Nowakowski, R.S., and Caviness, V.S. Jr. 1998. Cell cycle as operational unit of neocortical neuronogenesis. The Neuroscientist. in press.

  11. Sidman, R.L., and Rakic, P. 1973. Neuronal migration, with special reference to developing human brain: a review. Brain res. 62:1-35.

    Google Scholar 

  12. Rakic, P. 1990. Principles of neural cell migration. Experientia. 46:882-891.

    Google Scholar 

  13. Takahashi, T., Goto, T., and Caviness, V.S.Jr. 1998. Infragranular versus granular/supragranular layer separation is not modified by cell death. Soc. Neurosci. Abst. 24:282.

    Google Scholar 

  14. Takahashi, T., Goto, T., Miyama, S., Nowakowski, R., and Caviness, V.S.Jr. 1996. Intracortical distribution of a cohort of cells arising in the PVE. Soc. Neurosci. Abst. 22:284.

    Google Scholar 

  15. Takahashi, T., Nowakowski, R.S., and Caviness, V.S.Jr. 1996. Interkinetic and migratory behavior of a cohort of neocortical neurons arising in the early embryonic murine cerebral wall. J. Neurosci. 16:5762-5776.

    Google Scholar 

  16. Leuba, G., Heumann, D., and Rabinowicz, T. 1977. Postnatal development of the mouse cerebral neocortex 1. Quantitative cytoarchitectonics of some motor and sensory areas. J. Hirnforsch. 18:464-481.

    Google Scholar 

  17. Finlay, B.L., and Slattery, M. 1983. Local differences in the amount of early cell death in neocortex predict adult local specializations. Science. 219:1349-1351.

    Google Scholar 

  18. Finlay, B.L., and Pallas, S.L. 1989. Control of cell number in the developing mammalian visual system. Prog. Neurobiol. 32:207-234.

    Google Scholar 

  19. Sidman, R.L., and Rakic, P. 1982. Development of the human central nervous system. Pages 3-145, in: Haymaker, W., Adams, R.D., (eds.), Histology and Histopathology of the Nervous System, Charles C Thomas, Springfield.

    Google Scholar 

  20. Bayer, S.A., and Altman, J. 1991. Neocortical Development, Raven Press, Inc., New York.

    Google Scholar 

  21. Hicks, S.P., and D'Amato, C.J. 1968. Cell migration to the isocortex in the rat. Anatomy Rec. 160:619-634.

    Google Scholar 

  22. Bisconte, J.-C., and Marty, R. 1975. Analyse chronoarchitectonique du cerveau de rat par radioautographie. I. Histogenese du telencephale. J. Hirnforsch. 16:55-74.

    Google Scholar 

  23. McSherry, G.M. 1984. Mapping of cortical histogenesis in the ferret. J. Embryol. Exp. Morph. 81:239-252.

    Google Scholar 

  24. McSherry, G.M., and Smart, I.H.M. 1986. Cell production gradients in the developing ferret isocortex. J. Anatomy. 1-14.

  25. Cai, L., Hayes, N., and Nowakowski, R. 1997. Local homogeneity of cell cycle length in developing mouse cortex. J. Neurosci. 17:2079-2087.

    Google Scholar 

  26. Takahashi, T., Goto, T., Miyama, S., Nowakowski, R.S., and Caviness, V.S. Jr. 1996. Intracortical distribution of a cohort of cells arising in the PVE. Soc. Neurosci. Abst. 22:284.

    Google Scholar 

  27. Caviness, V.S.Jr., Takahashi, T., and Nowakowski, R.S. 1995. Numbers, time and neocortical neuronogenesis: A general developmental and evolutionary model. Trends Neurosci. 18:379-383.

    Google Scholar 

  28. Kornack, D., and Rakic, P. 1998. Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc. Natl. Acad. Sci. (USA). 95:1242-1246.

    Google Scholar 

  29. Takahashi, T., Nowakowski, R., and Caviness, V.S.Jr. 1997. The mathematics of neocortical neuronogenesis. Dev. Neurosci. 19:17-22.

    Google Scholar 

  30. Sherr, C.J. 1993. Mammalian G1 cyclins. Cell. 73:1059-1065.

    Google Scholar 

  31. Sherr, C.J., and Roberts, J.M. 1995. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes and Dev. 9:1149-1163.

    Google Scholar 

  32. Roberts, J., Koff, A., Polyak, K., Firpo, E., Collins, S., Ohtsubo, M., and Massague, J. 1994. Cyclins, cdks and cyclin kinase inhibitors. Cold Spring Harbor Symp. Quant. Biol. 59:31-38.

    Google Scholar 

  33. Murray, A., and Hunt, T. 1993. The Cell Cycle, W.H. Freeman and Co., New York.

    Google Scholar 

  34. Pardee, A.B. 1989. G1 events and regulation of cell proliferation. Science. 246:603-608.

    Google Scholar 

  35. Zetterberg, A., Larsson, O., and Wiman, K. 1995. What is the restriction point. Curr. Opin. Cell. Biol. 7:835-842.

    Google Scholar 

  36. Sherr, C.J. 1994. G1 phase progression: cycling on cue. Cell. 79:551-555.

    Google Scholar 

  37. Massague, J., and Polyak, K. 1995. Mammalian antiproliferative signals and their targets. Curr. Opin. Gen. Dev. 5:91-96.

    Google Scholar 

  38. Koff, A., Ohtsuki, M., Polyak, K., Roberts, J.M., and Massague, J. 1993. Negative regulation of G1 progression in mammalian cells; inhibition of cyclin E-dependent kinase by TGF-β. Science. 260:536-539.

    Google Scholar 

  39. Lees, E., and Harlow, E. 1995. Cell cycle progression and cell growth in mammalian cells: kinetic aspects of transition events. Pages 228-263, in: Hutchinson, C., Glover, D., (eds.), Cell Cycle Control, Oxford University Press, Oxford.

    Google Scholar 

  40. Tsai, L.-H., Lees, E., Faha, B., Harlow, E., and Riabowol, K. 1993. The cdk2 kinase is required for the Gl-to-S transition in mammalian cells. Oncogene. 8:1593-1602.

    Google Scholar 

  41. Ohtsubo, M., Theodoras, A.M., Schumacher, J., Roberts, J.M., and Pagano, M. 1995. Human cyclin E, a nuclear protein essential to the G1-to-S phase transition. Mol. Cell. Biol. 15:2612-2624.

    Google Scholar 

  42. Duronio, R., and O'Farrell, P. 1994. Developmental control of the Gl-S transitional program in Drosophila. Development. 120:1503-1515.

    Google Scholar 

  43. Duronio, R., and O'Farrell, P. 1995. Developmental control of the G1 to S transition in Drosophila: cyclin E is a limiting downstream target of E2F. Genes Develop. 9:1456-1468.

    Google Scholar 

  44. Gerhart, J., and Kirschner, M. 1997. Cell, Embryos, and Evolution, Blackwell Science, London.

    Google Scholar 

  45. Weinberg, R. 1995. The retinoblastoma protein and cell cycle control. Cell. 81:323-330.

    Google Scholar 

  46. Touchette, N. 1992. pRb and the cell cycle: more than meets the eye. J. NIH Res. 4:56-59.

    Google Scholar 

  47. Ohsugi, K., Gardiner, D., and Bryant, S. 1997. Cell cycle length affects gene expression and pattern formation in limbs. Devel. Biol. 189:13-21.

    Google Scholar 

  48. Prescott, D., and Bender, M. 1962. Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp. Cell. Res. 26:260-268.

    Google Scholar 

  49. Shermoen, A., and O'Farrell, P. 1991. Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell. 67:303-310.

    Google Scholar 

  50. Waechter, R.V., and Jaensch, B. 1972. Generation times of the matrix cells during embryonic brain development: an autoradiographic study in rats. Brain Res. 46:235-250.

    Google Scholar 

  51. Fero, M., Rivkin, M., Tasch, M., Porter, P., Carow, C., Firpo, E., and Polyak, K. 1996. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kipl-deficient mice. Cell. 85:733-744.

    Google Scholar 

  52. Kiyokawa, H., Kineman, R., Manova-Todorava, K., Soares, V., Hoffman, E., Ono, M., and Khanam, D. 1996. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kipl. Cell. 85:721-732.

    Google Scholar 

  53. Nakayama, K., Ishida, N., Shirane, M., Inomata, A., Inoue, T., Shishido, N., and Horii, I. 1996. Mice lacking p27Kipl display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 85:707-720.

    Google Scholar 

  54. Cavanagh, J., Mione, M., Pappas, I., and Parnavelas, J. 1997. Basic fibroblast growth factor prolongs the proliferation of rat cortical progenitor cells in vitro without altering their cell cycle parameters. Cereb. Cort. 7:293-302.

    Google Scholar 

  55. Ghosh, A., and Greenberg, M.E. 1995. Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron. 15:89-103.

    Google Scholar 

  56. Kilpatrick, T.J., and Bartlett, P.F. 1993. Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron. 10:255-265.

    Google Scholar 

  57. Temple, S., and Qian, X. 1995. bFGF, neurotrophins, and the control of cortical neurogenesis. Neuron. 15:249-252.

    Google Scholar 

  58. Kriegstein, A., Davis, M.B.E., and LoTurco, J. 1994. GABA and Glutamate depolarize cerebral cortical progenitor cells and inhibit DNA synthesis. Soc. Neurosci. Abst. 20:458.

    Google Scholar 

  59. LoTurco, J.J., Owens, D.F., Heath, M.J.S., Davis, M.B.E., and Kriegstein, A.R. 1995. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron. 15:1287-1298.

    Google Scholar 

  60. Bittman, K., Owens, D., Kriegstein, A., and LoTurco, J. 1997. Cell coupling and uncoupling in the ventricular zone of developing neocortex. J. Neurosci. 17:7037-7044.

    Google Scholar 

  61. Kriegstein, A., Bittman, K., Olsen, D., Boyce, L., Owens, D., and LoTurco, J. 1996. Coupling between neocortical progenitors changes during progression through the cell cycle. Soc. Neurosci. Abst. 22:284.

    Google Scholar 

  62. Goto, T., Takahashi, T., Miyama, T., Bhide, P., and Caviness, V.S. Jr. 1998. Gap junctions exert a developmentally regulated mitogenic effect upon neocortical proliferative epithelium. Soc. Neurosci. Abst. 24:280.

    Google Scholar 

  63. Goto, T., Takahashi, T., Miyama, S., Bhide, P., and Caviness, V.S. Jr. 1997. The effect of a gap junction uncoupling agent, 1-Octanol, on cell cycle in vitro in the neocortical proliferative epithelium. Soc. Neurosci. Abst. 23:867.

    Google Scholar 

  64. Delalle, I., Eksioglu, Y., Miyama, S., Bhide, P., Takahashi, T., Goto, T., and Caviness, V.S. Jr. 1997. Cyclin E and p27 mRNA expression in embryonic mouse cerebral wall explants. Soc. Neurosci. Abst. 23:867.

    Google Scholar 

  65. Tao, Y., Black, I., and DiCicco-Bloom, E. 1997. In vivo neurogenesis is inhibited by neutralizing antibodies to basic fibroblast growth factor. J. Neurobiol. 33:289-296.

    Google Scholar 

  66. Lu, N., and DiCicco-Bloom, E. 1997. Pituitary adenylate cyclase-activating polypeptide is an autocrine inhibitor of mitosis in cultured cortical precursor cells. Proc. Natl. Acac. Sci. USA. 94:3357-3362.

    Google Scholar 

  67. Bonni, A., Sun, Y., Nadal-Vicens, M., Bhatt, A., Frank, D., Rozovsky, I., and Stahl, N. 1997. Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science. 278:477-483.

    Google Scholar 

  68. Bonni, A., and Greenberg, M. 1997. Neurotrophin regulation of gene expression. Canad. J. Neurol. Sci. 24:272-283.

    Google Scholar 

  69. Cheng, M., Sexl, V., Sherr, C., and Roussel, M. 1998. Assembly of cyclin D-dependent kinase and titration of p27Kipl regulated by mitogen-activated protein kinase (MEK1). Proc. Natl. Acad. Sci. USA. 95:1091-1096.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caviness, V., Takahashi, T. & Nowakowski, R. The G1 Restriction Point as Critical Regulator of Neocortical Neuronogenesis. Neurochem Res 24, 497–506 (1999). https://doi.org/10.1023/A:1022579712262

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022579712262

Navigation