Skip to main content
Log in

Erucamide as a Modulator of Water Balance: New Function of a Fatty Acid Amide

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aim of this study was to isolate a compound from blood plasma that inhibits intestinal diarrhea and that appears also to regulate fluid volumes in other organs. The isolation procedure included lipid extraction, liquid chromatography, and gas chromatography. The active substance was identified by mass spectrometry as erucamide (MW 337 Da). The biological effect was reproduced with authentic erucamide. Erucamide is a fatty acid amide, such as oleamide and anandamide, which modulate other physiological functions in a receptor-mediated fashion. All the exact biological functions of erucamide are as yet to be defined, but it is already known to stimulate angiogenesis. Erucamide concentrations were determined in body organs from the pig. The blood plasma level was 3 ng/g, and those of lung, kidney, liver, and brain were 12, 2.5, 1.0, and 0.5 ng/g, respectively. Erucamide was below detection level in the intestine, but is known to be present in the cerebrospinal fluid. In the rat, 3H-erucamide was accumulated in vivo into lung, liver, and spleen and in vitro into lung, liver, brain, and intestine. The in vitro uptake was time and temperature dependent, but not saturable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Venero, J. L., Vizuete, M. L., Ilundain, A. A., Machado, A., Echevarria, M., and Cano, J. 1999. Detailed localization of aquaporin-4 messenger RNA in the CNS: Preferential expression in periventricular organs. Neuroscience 94:239–250.

    PubMed  Google Scholar 

  2. Badaut, J., Lasbennes, F., Magistretti, P. J., and Regli, L. 2002. Aquaporins in brain: Distribution, physiology, and pathophysiology. J. Cereb. Blood Flow Metab. 22:367–378.

    PubMed  Google Scholar 

  3. Manley, G. T., Fujimura, M., Ma, T., et al. 2000. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6:159–163.

    PubMed  Google Scholar 

  4. Chen, H. H., Lainchbury, J. G., Harty, G. J., and Burnett, J. C., Jr. 2002. Maximizing the natriuretic peptide system in experimental heart failure: Subcutaneous brain natriuretic peptide and acute vasopeptidase inhibition. Circulation 105:999–1003.

    PubMed  Google Scholar 

  5. Rosenberg, G. A. and Estrada, E. Y. 1995. Atrial natriuretic peptide blocks hemorrhagic brain edema after 4–hour delay in rats. Stroke 26:874–877.

    PubMed  Google Scholar 

  6. Doczi, T. 1993. Volume regulation of the brain tissue: a survey. Acta Neurochir. (Wien.) 121:1–8.

    Google Scholar 

  7. Vajda, Z., Pedersen, M., Doczi, T., et al. 2001. Effects of centrally administered arginine vasopressin and atrial natriuretic peptide on the development of brain edema in hyponatremic rats. Neurosurgery 49:697–704; discussion 704–695.

    PubMed  Google Scholar 

  8. Goto, A., Yamada, K., Yagi, N., Yoshioka, M., and Sugimoto, T. 1992. Physiology and pharmacology of endogenous digitalis-like factors. Pharmacol. Rev. 44:377–399.

    PubMed  Google Scholar 

  9. Takahashi, H. 2000. Endogenous digitalis-like factor: An update. Hypertens. Res. 23:S1–S5.

    PubMed  Google Scholar 

  10. Hamlyn, J. M., Blaustein, M. P., Bova, S., et al. 1991. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. USA 88:6259–6263.

    PubMed  Google Scholar 

  11. Clerico, A., Paci, A., Del Chicca, M. G., Biver, P., and Giampietro, O. 1992. Endogenous digitalis-like factors in human milk. Clin. Chem. 38:504–506.

    PubMed  Google Scholar 

  12. Halperin, J. A., Martin, A. M., and Malave, S. 1985. Increased digitalis-like activity in human cerebrospinal fluid after expansion of the extracellular fluid volume. Life Sci. 37:561–566.

    PubMed  Google Scholar 

  13. Halperin, J. A., Riordan, J. F., and Tosteson, D. C. 1988. Characteristics of an inhibitor of the Na+/K+ pump in human cerebrospinal fluid. J. Biol. Chem. 263:646–651.

    PubMed  Google Scholar 

  14. Lorenzo, A. V., Taratuska, A., and Halperin, J. A. 1989. Suppression of cerebrospinal fluid (CSF) production by a Na+/K+ pump inhibitor extracted from human cerebrospinal fluid. Z. Kinderchir. 44:24–26.

    PubMed  Google Scholar 

  15. Cloix, J. F. 1987. Endogenous digitalislike compounds: A tentative update of chemical and biological studies. Hypertension 10:I67–I70.

    PubMed  Google Scholar 

  16. van der Stelt, M., Veldhuis, W. B., van Haaften, G. W., et al. 2001. Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J. Neurosci. 21:8765–8771.

    PubMed  Google Scholar 

  17. Bezuglov, V. V., Bobrov, M., and Archakov, A. V. 1998. Bioactive amides of fatty acids. Biochemistry (Mosc.) 63:22–30.

    Google Scholar 

  18. Johansson, C. E. 1988. The choroid plexus-arachnoid-cerebrospinal fluid system. Pages 33–104, in Boulton A, Baker G, and Walz, W. (eds.), Neuromethods, Vol VII: The neuronal microenvironment: Electrolytes and water spaces. Clifton, NJ: Humana Press.

    Google Scholar 

  19. Knuckey, N. W., Fowler, A. G., Johanson, C. E., Nashold, J. R., and Epstein, M. H. 1991. Cisterna magna microdialysis of 22Na to evaluate ion transport and cerebrospinal fluid dynamics. J. Neurosurg. 74:965–971.

    PubMed  Google Scholar 

  20. Lönnroth, I. and Lange, S. 1984. Purification and characterization of a hormone-like factor which inhibits cholera secretion. FEBS Lett. 177:104–108.

    PubMed  Google Scholar 

  21. Lönnroth, I., Lange, S., and Skadhauge, E. 1988. The antisecretory factors: Inducible proteins which modulate secretion in the small intestine. Comp. Biochem. Physiol. A 90:611–617.

    PubMed  Google Scholar 

  22. Lange, S. and Lönnroth, I. 1984. Passive transfer of protection against cholera toxin in rat intestine. FEMS Micobiol. Lett. 24: 165–168.

    Google Scholar 

  23. Johansson, E. 1997. Cloning, expression and characterization of antisecretory factor. Department of Medical Microbiology and Immunology. University of Göteborg, Göteborg, Sweden.

    Google Scholar 

  24. Johansson, E., Lönnroth, I., Lange, S., Jonson, I., Jennische, E., and Lonnroth, C. 1995. Molecular cloning and expression of a pituitary gland protein modulating intestinal fluid secretion. J. Biol. Chem. 270:20615–20620.

    PubMed  Google Scholar 

  25. Wakamatsu, K., Masaki, T., Itoh, F., Kondo, K., and Sudo, K. 1990. Isolation of fatty acid amide as an angiogenic principle from bovine mesentery. Biochem. Biophys. Res. Commun. 168: 423–429.

    PubMed  Google Scholar 

  26. Mitchell, C. A., Davies, M. J., Grounds, M. D., et al. 1996. Enhancement of neovascularization in regenerating skeletal muscle by the sustained release of erucamide from a polymer matrix. J. Biomater. Appl. 10:230–249.

    PubMed  Google Scholar 

  27. Arai, Y., Fukushima, T., Shirao, M., Yang, X., and Imai, K. 2000. Sensitive determination of anandamide in rat brain utilizing a coupled-column HPLC with fluorimetric detection. Biomed. Chromatogr. 14:118–124.

    PubMed  Google Scholar 

  28. Lange, S. 1982. A rat model for an in vivo assay of enterotoxic diarrhea. FEMS Micobiol. Lett. 15:239–242.

    Google Scholar 

  29. Lönnroth, I. and Lange, S. 1986. Purification and characterization of the antisecretory factor: A protein in the central nervous system and in the gut which inhibits intestinal hypersecretion induced by cholera toxin. Biochim. Biophys. Acta 883:138–144.

    PubMed  Google Scholar 

  30. Gecse, A., Mezei, Z., and Telegdy, G. 1986. The action of peptides and proteases on the arachidonate cascade of human and rat platelets. Adv. Exp. Med. Biol. 198:121–128.

    PubMed  Google Scholar 

  31. Bertolino, F., Valentin, J. P., Maffre, M., et al. 1995. Intrinsic activity of the non-prostanoid thromboxane A2 receptor antagonist, daltroban (BM 13,505), in human platelets in vitro and in the rat vasculature in vivo. Br. J. Pharmacol. 115:210–216.

    PubMed  Google Scholar 

  32. Harada, K. and Ikegami, T. 2000. Evolution of specificity in an immune network. J. Theor. Biol. 203:439–449.

    PubMed  Google Scholar 

  33. Lombardi, G., Dianzani, C., Miglio, G., Canonico, P. L., and Fantozzi, R. 2001. Characterization of ionotropic glutamate receptors in human lymphocytes. Br. J. Pharmacol. 133:936–944.

    PubMed  Google Scholar 

  34. Merkler, K. A., Baumgart, L. E., DeBlassio, J. L., et al. 1999. A pathway for the biosynthesis of fatty acid amides. Adv. Exp. Med. Biol. 469:519–525.

    PubMed  Google Scholar 

  35. Bialer, M. 1991. Clinical pharmacology of valpromide. Clin. Pharmacokinet. 20:114–122.

    PubMed  Google Scholar 

  36. Jain, M. K., Ghomashchi, F., Yu, B. Z., et al. 1992. Fatty acid amides: Scooting mode-based discovery of tight-binding competitive inhibitors of secreted phospholipases A2. J. Med. Chem. 35:3584–3586.

    PubMed  Google Scholar 

  37. Cravatt, B. F., Prospero-Garcia, O., Siuzdak, G., et al. 1995. Chemical characterization of a family of brain lipids that induce sleep. Science 268:1506–1509.

    PubMed  Google Scholar 

  38. Cravatt, B. F., Giang, D. K., Mayfield, S. P., Boger, D. L., Lerner, R. A., and Gilula, N. B. 1996. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87.

    PubMed  Google Scholar 

  39. Cravatt, B. F., Demarest, K., Patricelli, M. P., et al. 2001. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA 98:9371–9376.

    PubMed  Google Scholar 

  40. Boger, D. L., Henriksen, S. J., and Cravatt, B. F. 1998. Oleamide: An endogenous sleep-inducing lipid and prototypical member of a new class of biological signaling molecules. Curr. Pharm. Des. 4:303–314.

    PubMed  Google Scholar 

  41. Devane, W. A., Hanus, L., Breuer, A., et al. 1992. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949.

    PubMed  Google Scholar 

  42. Walker, J. M., Huang, S. M., Strangman, N. M., Tsou, K., and Sanudo-Pena, M. C. 1999. Pain modulation by release of the endogenous cannabinoid anandamide. Proc. Natl. Acad. Sci. USA 96:12198–12203.

    PubMed  Google Scholar 

  43. Cheer, J. F., Cadogan, A. K., Marsden, C. A., Fone, K. C., and Kendall, D. A. 1999. Modification of 5–HT2 receptor mediated behaviour in the rat by oleamide and the role of cannabinoid receptors. Neuropharmacology 38:533–541.

    PubMed  Google Scholar 

  44. Mechoulam, R., Fride, E., Hanus, L., et. al. 1997. Anandamide may mediate sleep induction. Nature 389:25–26.

    PubMed  Google Scholar 

  45. Guan, X., Cravatt, B. F., Ehring, G. R., et al. 1997. The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. J. Cell Biol. 139:1785–1792.

    PubMed  Google Scholar 

  46. Boger, D. L., Patterson, J. E., Guan, X., Cravatt, B. F., Lerner, R. A., and Gilula, N. B. 1998. Chemical requirements for inhibition of gap junction communication by the biologically active lipid oleamide. Proc. Natl. Acad. Sci. USA 95:4810–4815.

    PubMed  Google Scholar 

  47. Ueda, N. and Yamamoto, S. 2000. Anandamide amidohydrolase (fatty acid amide hydrolase). Prostaglandins Other Lipid Mediat. 61:19–28.

    PubMed  Google Scholar 

  48. Egertova, M., Cravatt, B. F., and Elphick, M. R. 2000. Fatty acid amide hydrolase expression in rat choroid plexus: Possible role in regulation of the sleep-inducing action of oleamide. Neurosci. Lett. 282:13–16.

    PubMed  Google Scholar 

  49. Fowler, C. J., Jonsson, K. O., and Tiger, G. 2001. Fatty acid amide hydrolase: Biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2–arachidonoylglycerol, palmitoylethanolamide, and oleamide. Biochem. Pharmacol. 62:517–526.

    PubMed  Google Scholar 

  50. Boger, D. L., Sato, H., Lerner, A. E., et. al. 2000. Exceptionally potent inhibitors of fatty acid amide hydrolase: The enzyme responsible for degradation of endogenous oleamide and anandamide. Proc. Natl. Acad. Sci. USA 97:5044–5049.

    PubMed  Google Scholar 

  51. Mendelson, W. B. and Basile, A. S. 1999. The hypnotic actions of oleamide are blocked by a cannabinoid receptor antagonist. Neuroreport 10:3237–3239.

    PubMed  Google Scholar 

  52. Lange, S., Jennische, E., Johansson, E., and Lonnroth, I. 1999. The antisecretory factor: Synthesis and intracellular localisation in porcine tissues. Cell Tissue Res. 296:607–617.

    PubMed  Google Scholar 

  53. Rakhshan, F., Day, T. A., Blakely, R. D., and Barker, E. L. 2000. Carrier-mediated uptake of the endogenous cannabinoid anandamide in RBL-2H3 cells. J. Pharmacol. Exp. Ther. 292: 960–967.

    PubMed  Google Scholar 

  54. Beltramo, M. and Piomelli, D. 2000. Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2–arachidonylglycerol. Neuroreport 11:1231–1235.

    PubMed  Google Scholar 

  55. Bisogno, T., MacCarrone, M., De Petrocellis, L., et. al. 2001. The uptake by cells of 2–arachidonoylglycerol, an endogenous agonist of cannabinoid receptors. Eur. J. Biochem. 268:1982–1989.

    PubMed  Google Scholar 

  56. Patricelli, M. P. and Cravatt, B. F. 2001. Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides. Vitam. Horm. 62:95–131.

    PubMed  Google Scholar 

  57. Charlton, K. M., Corner, A. H., Davey, K., Kramer, J. K., Mahadevan, S., and Sauer, F. D. 1975. Cardiac lesions in rats fed rapeseed oils. Can. J. Comp. Med. 39:261–269.

    PubMed  Google Scholar 

  58. Sankhe, S. Y., Hirt, D. E., Roberts, W. P., and Havens, M. R. 1999. Evaluation of additive concentration profiles in multilayer films. Clemson, SC, USA. Annual Technical Conference—Society of Plastics Engineers, p. 2516–2520.

  59. Hanus, L. O., Fales, H. M., Spande, T. F., and Basile, A. S. 1999. A gas chromatographic-mass spectral assay for the quantitative determination of oleamide in biological fluids. Anal. Biochem. 270:159–166.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Hamberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamberger, A., Stenhagen, G. Erucamide as a Modulator of Water Balance: New Function of a Fatty Acid Amide. Neurochem Res 28, 177–185 (2003). https://doi.org/10.1023/A:1022364830421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022364830421

Navigation