Skip to main content
Log in

Azithromycin Impact on Neutrophil Oxidative Metabolism Depends on Exposure Time

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Several antimicrobial agents have already been investigated relating to their influence on neutrophil ROS generation. Azithromycin provides, a dose-related anti-oxidant effect, after 15 min incubation, with the stimulating agent FMLP, as well with PMA or S. aureus. This finding was however obtained with concentrations not considered in therapeutics. Since short incubation times are not representative of the physiological situation, and since azithromycin is characterized by prolonged high concentrations within phagocytes, the same experiments were performed over 2 and 4 h exposures. A time-dependent anti-oxidant effect was then reported. The maximum effect was obtained with PMA (IC50 were 856 and 30 μg/ml for 15 min and 4 h incubation times respectively). Time-dependent modifications of neutrophil oxidative metabolism seem to be correlated with intracellular concentrations. Depressed oxidative metabolism might be related neither to azithromycin cellular toxicity, nor to superoxide scavenging properties. By increasing exposure periods, therapeutic concentrations could therefore lead to an anti-inflammatory effect, potentially of clinical interest since associated with bacteriostatic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rossi, F. 1986. The O 2 -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Bioch. Bioph. Acta 853:65–89.

    Google Scholar 

  2. Weiss, S. J. 1989. Tissue destruction by neutrophils. New Engl. J. Med. 320:365–376.

    Google Scholar 

  3. Thelen, M., B. Dewald, and M. Baggiolini. 1993. Neutrophil signal transduction and activation of the respiratory burst. Phys. Rev. 73:797–821.

    Google Scholar 

  4. Roos, D. 1991. The respiratory burst of phagocytic leucocytes. Drug. Invest. 3:48–53.

    Google Scholar 

  5. Labro, M. T. and J. El Benna. 1991. Effects of anti-infectious agents on polymorphonuclear neutrophils. Eur. J. Clin. Microbiol. Infect. Dis. 10:124–131.

    Google Scholar 

  6. Jaeschke, H. 1995. Mechanisms of oxidant stress-induced acute tissue injury. P.S.E.B.M. 209:104–111.

    Google Scholar 

  7. Hand, W. L., D. L. Hand, and N. L. King-Thompson. 1990. Antibiotic inhibition of the respiratory burst response in human polymorphonuclear leukocytes. Antimicrob. Agents Chemother. 34:863–870.

    Google Scholar 

  8. Moutard, I., B. Gressier, C. Brunet, T. Dine, M. Luyckx, M. Cazin, and J. C. Cazin. 1997. In Vitro interaction between dirithromycin or its metabolite, erythromycylamine, and oxidative polymorphonuclear metabolism J. Antibiot. 50:53–57.

    Google Scholar 

  9. Labro, M. T., and J. El Benna. 1990. Synergistic bactericidal interaction of josamycin with human neutrophils in vitro. J. Antimicrob. Chemother. 26:515–524.

    Google Scholar 

  10. Van Den Broek, P. J. 1989. Antimicrobial drugs, microorganisms, and phagocytes. Rev. Infect. Dis. 11:213–245.

    Google Scholar 

  11. Plewig, G., and E. SchÖpf. 1975. Anti-inflammatory effects of antimicrobial agents: an in vivo study. J. Invest. Derm. 65:532–536.

    Google Scholar 

  12. Agen, C., R. Danesi, C. Blandizzi, M. Costa, B. Stacchini, P. Favini, and M. Del Tacca. 1993. Macrolide antibiotics as antiinflammatory agents: roxithromycin in an unexpected role. Agents Actions 38:85–90.

    Google Scholar 

  13. Bauldry, S. A., R. L. Wykle, and D. A. Bass. 1988. Phospholipase A2 activation in human neutrophils. Differential actions of diacylglycerols and alkylacylglycerols in priming cells for stimulation by N-formyl-Met-Leu-Phe. J. Biol. Chem. 263:16787–16795.

    Google Scholar 

  14. Curnutte, J. T., R. W. Erickson, J. Ding, and J. A. Badwey. 1994. Reciprocal interactions between protein kinase C and components of the NADPH oxidase complex may regulate superoxide production by neutrophils stimulated with a phorbol ester. J. Biol. Chem. 269:10813–10819.

    Google Scholar 

  15. Pascual, A., G. Lopez-Lopez, J. Aragon, and E. J. Perea. 1990. Effect of azithromycin, roxithromycin and erythromycin on human polymorphonuclear leukocyte function against Staphylococcus aureus. Chemotherapy. 36:422–427.

    Google Scholar 

  16. Pascual, A., M. Carmen Conejo, I. Garcia, and E. J. Perea. 1995. Factors affecting the intracellular accumulation and activity of azithromycin. J. Antimicrob. Chemother. 35:85–93.

    Google Scholar 

  17. Mac Donald, P. J., and H. Pruul. 1991. Phagocyte uptake and transport of azithromycin. Eur. J. Clin. Microb. Infect. Dis. 10:828–833.

    Google Scholar 

  18. Schentag, J. J., and C. H. Ballow. 1991. Tissue directed pharmacokinetics. Am. J. Med. 91:5S–11S.

    Google Scholar 

  19. Kirst, H. A., and G. D. Sides. 1989. New directions for macrolide antibiotics: pharmacokinetics and clinical efficacy. Antimicrobial. Agents Chemother. 33:1419–1422.

    Google Scholar 

  20. Cabanis, A., B. Gressier, S. Lebegue, C. Brunet, T. Dine, M. Luyckx, M. Cazin, and J. C. Cazin. 1994. A rapid density gradient technique for separating polymorphonuclear granulocytes. APMIS 102:109–121.

    Google Scholar 

  21. Srinivas, V. K., C. M. Habibullah, Q. Ayesha, S. I. Hassan, U. R. Khaleel, K. Rehman, and S. Mohsins. 1993. Lactate dehydrogenase: a marker of cellular integrity. Meth. Find. Exp. Clin. Pharmacol. 15:709–713.

    Google Scholar 

  22. Aruoma, O. I., B. Halliwell, B. M. Hoey, and J. Butler. 1989. The antioxidant action of N-acetylcystein: its reaction with hydrogen peroxide, hydroxyl radical, superoxide and hypochlorous acid. Free Rad. Biol. Med. 6:593–597.

    Google Scholar 

  23. Khalfi, F., B. Gressier, C. Brunet, T. Dine, M. Luyckx, M. Cazin, and J. C. Cazin. 1996. Involvement of extracellular calcium in the release of elastase and the human neutrophils oxidative burst. Cell. Mol. Biol. 42:1211–1218.

    Google Scholar 

  24. Cohen, H. J., and M. E. Chovaniec. 1978. Superoxide generation by digitonin stimulated guinea pig granulocytes. A basis for continuous assay for monitoring superoxide production and for the study of the activation of the generating system. J. Clin. Invest. 61:1081–1087.

    Google Scholar 

  25. Cabanis, A., B. Gressier, C. Brunet, T. Dine, M. Luyckx, M. Cazin, and J. C. Cazin. 1996. Effect of the protein kinase C inhibitor GF109203X on elastase release and respiratory burst of human neutrophils. Gen. Pharmac. 27:1409–1414.

    Google Scholar 

  26. Prokesch, R. C., and W. L. Hand. 1982. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob. Agents Chemother. 21:373–380.

    Google Scholar 

  27. Gladue, R. P., G. M. Bright, R. E. Isaacson, and M. F. Newborg. 1989. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob. Agents Chemother. 33:277–282.

    Google Scholar 

  28. Wildfeuer, A., I. Reisert, and H. Laufen. 1993. Uptake and subcellular distribution of azithromycin in human phagocytic cells. Arzneim. Forsch. 43:484–486.

    Google Scholar 

  29. Wildfeuer, A., H. Laufen, D. MÜller-Wening, and O. Haferkamp. 1989. Interaction of azithromycin and human phagocytic cells. Arzneim. Forsch. 39:755–758.

    Google Scholar 

  30. Labro, M. T., J. El Benna, and H. Abdelghaffar. 1993. Modulation of human polymorphonuclear neutrophil function by macrolides: preliminary data concerning dirithromycin. J. Antimicrob. Chemother. 31:51–64.

    Google Scholar 

  31. Joone, G. K., E. J. Van Rensburg, and R. Anderson. 1992. Investigation of the in vitro uptake, intraphagocytic biological activity and effects on neutrophil superoxide generation of dirithromycin compared with erythromycin. J. Antimicrob. Chemother. 30:509–523.

    Google Scholar 

  32. Anderson, R., A. J. Theron, and C. Feldman. 1996. Membrane-stabilizing, antiinflammatory interactions of macrolides with human neutrophils. Inflammation 20:693–705.

    Google Scholar 

  33. Gaudry, M., C. Combadiere, C. Marquetty, and J. A. Hakim. 1990. Comparison of priming effect of phorbolmyristate acetate and phorbol dibutyrate on fMLP induced oxidative burst in human neutrophils. Immunopharmacol. 20:45–56.

    Google Scholar 

  34. Kessels, G. C. R., D. Roos, and A. J. Verhoeven. 1991. FMet-Leu-Phe-induced activation of phospholipase D in human neutrophils. J. Biol. Chem. 34:23152–23156.

    Google Scholar 

  35. Panteix, G., B. Guillaumond, R. Harf, A. Desbos, V. Sapin, M. Leclercq, and M. Perrin-Fayolle. 1993. In-vitro concentration of azithromycin in human phagocytic cells. J. Antimicrob. Chemother. 31:1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levert, H., Gressier, B., Moutard, I. et al. Azithromycin Impact on Neutrophil Oxidative Metabolism Depends on Exposure Time. Inflammation 22, 191–201 (1998). https://doi.org/10.1023/A:1022340107017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022340107017

Keywords

Navigation