Skip to main content
Log in

Wild relatives can contribute to the improvement of fruit quality in pepino (Solanum muricatum)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Narrow intraspecific variation for sugar content in pepino (Solanum muricatum Aiton) hinders the development of new pepino cultivars with improved fruit quality. However, some wild related species have high soluble solids concentration (SSC) and titratable acidity (TA). Generation means analysis was used to estimate genetic parameters for SSC, TA and ascorbic acid concentration (AAC) in two families of interspecific crosses between a S. muricatum parent (Sm-32) and one accession of each of the wild species Solanum caripense (Sc-4) and Solanum tabanoense (St-1). In both families, the additive effect [d] was the only significant parameter for SSC, the alleles of wild species contributing positively to increasing SSC values. For TA, genetic effects associated with additivity [d] and dominance [h] were detected in both families. Additionally, in Sm-32 × Sc-4 nonallelic interactions associated with dominance ([j] and [l]) were significant. For this trait, alleles from the wild species contribute additively to a high value of the character, but are recessive to those of the cultivated S. muricatum. No genetic variation was found for AAC. Broad-sense heritabilities for SSC and TA were intermediate (0.40 to 0.50). Positive significant genetic correlations (around 0.68 in both families) were found between SSC and TA. The results obtained in backcrosses of interspecific hybrids to S. muricatum, together with the estimates of genetic advance after selection, indicate that recovery of individuals with higher SSC and TA and adequate SSC/TA ratio can be achieved in a few backcrosses. In conclusion, this work indicates that wild species S. caripense and S. tabanoense are worthy sources of variation for improving pepino fruit quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, R.W., 1966. Principles of Plant Breeding, John Wiley & Sons, Inc., N.Y.

    Google Scholar 

  • Anderson, G.J., 1979. Systematic and evolutionary consideration of Solanum section Basarthrum. In: J.G. Hawkes, R.N. Lester & A.D. Skelding (Eds.), The Biology and Taxonomy of the Solanaceae, pp 549-562. Linnean Soc Symp Ser, No 7. London.

  • Anderson, G.J., R.K. Jansen & Y. Kim, 1996. The origin and relationships of the pepino Solanum muricatum (Solanaceae): DNA restriction fragment evidence. Ec Bot 50: 369-380.

    Google Scholar 

  • Azanza, F., T.E. Young, D. Kim, S.D. Tanksley & J.A. Juvik, 1994. Characterization of the effect of introgressed segments of chromosome 7 and 10 from Lycopersicon chmielewskii on tomato soluble solids, pH and yield. Theor Appl Genet 87: 965-972.

    Article  CAS  Google Scholar 

  • Becker, W.A., 1984. Manual of Quantitative Genetics, Academic Enterprises, Pullman, Washington.

    Google Scholar 

  • Cavalli, L.L., 1952. An analysis of linkage in quantitative inheritance. In: E.C.R. Reeve & C.H. Waddington (Eds.), Quantitative Inheritance, pp. 135-144. HMSO, London.

    Google Scholar 

  • Cornejo, P., M.J. Esteban & F. Nuez, 1990. Obtención de plántulas de pepino dulce a partir de semilla. Actas de Horticultura 4: 312-314.

    Google Scholar 

  • Esquinas-Alcázar, J. & F. Nuez, 1995. Situación taxonómica, domesticación y difusión del tomate. In: F. Nuez (Ed.), El cultivo del tomate, pp. 13-42. Mundi-Prensa, Madrid.

    Google Scholar 

  • Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics, Longman, Essex.

    Google Scholar 

  • González, M., M. Cámara, J. Prohens, J.J. Ruiz, E. Torija & F. Nuez, 2000. Colour and composition of improved pepino cultivars at three ripening stages. Gartenbauwissenschaft 65(2): 83-87.

    Google Scholar 

  • Hébert, D., S. Fauré & I. Olivieri, 1994. Genetic, phenotypic and environmental correlations in black medic, Medicago lupulina L., grown in three different environments. Theor Appl Genet 88: 604-613.

    Article  Google Scholar 

  • Heiser, C.B., 1964. Origin and variability of the pepino (Solanum muricatum): A preliminary report. Baileya 12: 151-158.

    Google Scholar 

  • Heiser, C.B., 1969. Nightshades: The Paradoxical Plants, Freesman, San Francisco.

    Google Scholar 

  • Hewitt, J.D. & T.C. Garvey, 1987. Wild sources of high soluble solids in tomato. In: D.J. Nevins & R.A. Jones (Eds.), Plant Biology, vol 4: Tomato Biotechnology, pp 45-54. Liss, New York.

    Google Scholar 

  • Kalloo, G., 1988. Vegetable Breeding, CRC Press, Boca Raton.

    Google Scholar 

  • Mather, K. & J.L. Jinks, 1977. Biometrical Genetics, Chapman and Hall, London.

    Google Scholar 

  • Mione, T. & G.J. Anderson, 1992. Pollen-ovule ratios and breeding system evolution in Solanum section Basarthrum (Solanaceae). Amer J Bot 79: 279-287.

    Article  Google Scholar 

  • Murray, B.G., K.R.W. Hammett & F.D. Grigg, 1992. Seed set and breeding system in the pepino Solanum muricatum Ait., Solanaceae. Sci Hort 49: 83-92.

    Article  Google Scholar 

  • National Research Council, 1989. Lost Crops of the Incas. Little-Known Plants of the Andes with Promise for Worldwide Cultivation. National Academy Press, Washington, D.C.

    Google Scholar 

  • Nuez, F. & J.J. Ruiz, 1996. El pepino dulce y su cultivo. FAO, Rome.

    Google Scholar 

  • Nuez, F., R. Morales, J. Prohens, P. Fernández de Córdova, S. Soler, E. Valdivieso & V. Solorzano, 1999. Germplasm of Solanaceae horticultural crops in the south of Ecuador. Plant Gen Res Newsl 120: 44-47.

    Google Scholar 

  • Osborn, T.C., D.C. Alexander & J.F. Fobes, 1986. Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids concentration in tomato fruit. Theor Appl Genet 73: 350-356.

    Google Scholar 

  • Pluda, D., H.D. Rabinovitch & V. Kafkafi, 1993. Pepino dulce (Solanum muricatum Aiton) quality characteristics respond to nitrogen nutrition and salinity. J Amer Soc Hort Sci 118: 86-91.

    Google Scholar 

  • Prohens, J. & F. Nuez, 1999. Strategies for breeding a new greenhouse crop, the pepino (Solanum muricatum Aiton). Can J Plant Sci 79: 269-275.

    Google Scholar 

  • Prohens, J. & F. Nuez, 2001. The use of wild species in the improvement of pepino (Solanum muricatum). In: G. Barendse, R. van den Berg, T. Mariani & G. van den Weerden (Eds.), Solanaceae V: Advances in Taxonomy and Utilization, pp. 297-306. Nijmegen University Press, Netherlands.

    Google Scholar 

  • Prohens, J., J.J. Ruiz & F. Nuez, 1999. Yield, earliness and fruit quality of pepino clones and their hybrids in the autumn-winter cycle. J Sci Food Agric 79: 340-346.

    Article  CAS  Google Scholar 

  • Redgwell, R.J. & N.A. Turner, 1986. Pepino (Solanum muricatum): Chemical composition of ripe fruit. J Sci Food Agric 37: 1217-1222.

    CAS  Google Scholar 

  • Rodríguez-Burruezo, A., J. Prohens & F. Nuez, 2002. Genetic analysis of quantitative traits in pepino (Solanum muricatum) in two growing seasons. J Amer Soc Hort Sci 127: 271-278.

    Google Scholar 

  • Ruiz, J.J. & F. Nuez, 2000. High temperatures and parthenocarpy fruit set: misunderstandings about the pepino breeding system. J Hort Sci Biotech 75: 161-166.

    Google Scholar 

  • Sánchez, M., M. Cámara, J. Prohens, J.J. Ruiz, E. Torija & F. Nuez, 2000. Variation in carbohydrate content during ripening in two clones of pepino. J Sci Food Agric 80: 1985-1991.

    Article  Google Scholar 

  • Stiefkens, L., G. Bernardello & G.J. Anderson, 1999. Karyotypic studies in artificial hybrids of Solanum sections Anarrhichomenum and Basarthrum (Solanaceae). Aust J Bot 47: 147-155.

    Article  Google Scholar 

  • Welles, G.W.H., 1992. Experiences with growing and consumer appreciation of pepino fruits (Solanum muricatum Ait.) in the Netherlands. Acta Hort 318: 211-212.

    Google Scholar 

  • Wright, S., 1968. Evolution and Genetics of Populations, vol I: Genetics and Biometric Foundations, The University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Burruezo, A., Prohens, J. & Nuez, F. Wild relatives can contribute to the improvement of fruit quality in pepino (Solanum muricatum). Euphytica 129, 311–318 (2003). https://doi.org/10.1023/A:1022280719618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022280719618

Navigation