Skip to main content
Log in

Pathways That Control Cortical F-Actin Dynamics During Secretion

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chromaffin cells possess a mesh of filamentous actin underneath the plasma membrane which acts as a barrier to the chromaffin vesicles access to exocytotic sites. Disassembly of cortical F-actin in response to stimulation allows the movement of vesicles from the reserve pool to the release-ready vesicle pool and, therefore, to exocytotic sites. The dynamics of cortical F-actin is controlled by two mechanisms: a) stimulation-induced Ca2+ entry and scinderin activation and b) protein kinase C (PKC) activation and MARCKS phosphorylation as demonstrated here by experiments with recombinant proteins, antisense olygodeoxynucleotides and vector mediated transient expressions. Under physiological conditions (i.e., cholinergic receptor stimulation followed by Ca2+ entry), mechanism (a) is the most important for the control of cortical F-actin network whereas when Ca2+ is released from intracellular stores (i.e., histamine stimulation) cortical F-actin is regulated mainly by mechanism b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Smith, A. D. 1968. The storage of hormones. Biochem. J. 109:17-19.

    Google Scholar 

  2. Trifaró, J.-M. 1977. Common mechanisms of hormone secretion. Annu.Rev. Pharmacol. Toxicol. 17:27-47.

    Google Scholar 

  3. Trifaró, J.-M. and Poisner, A. M. 1982. Common properties in the mechanisms of synthesis, processing and storage of secretory products. Pages 387-407, in Poisner, A. M. and Trifaró, J.-M. (eds.), The secretory process, Vol. I. The secretory granule, Elsevier/North Holland, New York.

    Google Scholar 

  4. Heinemann, C., von Rüden, L., Chow, R. H., and Neher, E. 1993. A two-step model of secretion control in neuroendocrine cells. Pflügers Arch-Eur. J. Physiol. 424:105-112.

    Google Scholar 

  5. Neher, E. and Zucker, R. S. 1993. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10:21-30.

    Google Scholar 

  6. Vitale, M. L., Seward, E. P., and Trifaró, J.-M. 1995. Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353-363.

    Google Scholar 

  7. Vitale, M. L., Rodríguez Del Castillo, A., Tchakarov, L., and Trifaró, J.-M. 1991. Cortical filamentous actin disassembly and scinderin redistribution during chromaffin cell stimulation precede exocytosis, a phenomenon non exhibited by gelsolin. J. Cell. Biol. 113:1057-1067.

    Google Scholar 

  8. Burgoyne, R. D., Geisow, M. J., and Barron, J. 1982. Dissection of stages in exocytosis in the adrenal chromaffin cells with use of trifluoperazine. Proc.Roy.Soc.Lond.(B). 216:111-115.

    Google Scholar 

  9. Jockush, B. M., Burger, M. M., Da Prada, M., Richards, J. G., Chaponnier, C., and Gabbiani, G. 1977. α-actinin attaches to membranes of secretory vesicles. Nature 270:628-629.

    Google Scholar 

  10. Bader, M.-F. and Aunis, D. 1983. The 97 kD actinin-like protein in chromaffin granule membrane from adrenal medulla: evidence for localization on the cytoplasmic surface and for binding to actin filaments. Neuroscience 8:165-181.

    Google Scholar 

  11. Trifaró, J.-M., Kenigsberg, R. L., Côté, A., Lee, R. W. H., and Hikita, T. 1984. Adrenal paraneuron contractile proteins and stimulus-secretion coupling. Can. J. Physiol. Pharmacol. 62:493-501.

    Google Scholar 

  12. Fowler, V. M. and Pollard, H. B. 1982. Chromaffin granule membrane-actin interactions are calcium-sensitive. Nature 295: 336-339.

    Google Scholar 

  13. Trifaró, J.-M. 1984. The adrenal paraneuron, its biology and pharmacology. Can. J. Physiol. Pharmacol. 62:465-466.

    Google Scholar 

  14. Trifaró, J.-M. 1982. The cultured chromaffin cell: A model for the study of biology and pharmacology of paraneurons. Trends in Pharmacol. Sci. 3:389-392.

    Google Scholar 

  15. Cheek, T. R. and Burgoyne, R. D. 1986. Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS (Fed. Eur. Biochem. Soc.) Lett. 207:110-114.

    Google Scholar 

  16. Cheek, T. R. and Burgoyne, R. D. 1987. c-AMP inhibits both nicotine-induced actin disassembly and catecholamine secretion from bovine adrenal chromaffin cells. J. Biol. Chem. 262: 11663-11666.

    Google Scholar 

  17. Burgoyne, R. D., Morgan, A., and O'Sullivan, A. J. 1989. The control of cytoskeletal actin and exocytosis in intact and permeabilized adrenal chromaffin cells: Role of calcium and protein kinase C. Cell. Signalling 1:323-334.

    Google Scholar 

  18. Trifaró, J.-M., Novas, M. L., Fournier, S., and Rodríguez Del Castillo, A. 1989. Cellular and molecular mechanisms in hormone and neurotransmitter secretion. Pages 15-20, in Velazco, M., Israel, A., Romero, E., and Silva, H. (eds.), Recent advances in pharmacology and therapeutics, Elsevier Science Publishers, New York.

    Google Scholar 

  19. Tchakarov, L., Zhang, L., Rosé, S. D., Tang, R., and Trifaró, J.-M. 1998. Light and electron microscopic study of changes in the organization of the cortical actin cytoskeleton during chromaffin cell secretion. J. Histochem. Cytochem. 46:193-203.

    Google Scholar 

  20. Rosé, S. D., Lejen, T., Casaletti, L., Larson, R. E., Pene, T. D., and Trifaró, J.-M. (in press). Molecular motors involved in chromaffin cell secretion. Proc. New York Acad. Sci. (2002).

  21. Larson, R. E. 1996. Myosin-V: A class of unconventional molecular motors. Braz. J. Med. Biol. Res. 29:309-318.

    Google Scholar 

  22. Parsons, T. D., Coorssen, J. R., Horstman, H., and Almers, W. 1995. Docked granules, the exocytotic burst, and the need for ATP hydrolysis in endocrine cells. Neuron. 15:1085-1096.

    Google Scholar 

  23. Bitner, M. A. and Holz, R. W. 1992. Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J. Biol. Chem. 267:16219-16225.

    Google Scholar 

  24. Sudhof, T. C. and Jahn, R. 1991. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron. 6: 665-667.

    Google Scholar 

  25. Bommert, K., Charlton, M. P., DeBello, W. M., Chin, G. J., Betz, H., and Augustine, G. J. 1993. Inhibition of neurotransmitter release by C 2-domain peptides implicates synaptotagmin in exocytosis. Nature 363:163-165.

    Google Scholar 

  26. Popov, S. V. and Poo, M. M. 1993. Synaptotagmin: A calciumsensitive inhibitor of exocytosis? Cell 73:1247-1249.

    Google Scholar 

  27. Alvarez de Toledo, G., Fernández-Chacón, R., and Fernández, J. M. 1993. Release of secretory products during transient vesicle fusion. Nature 363:554-557.

    Google Scholar 

  28. Trifaró, J.-M. and Vitale, M. L. 1993. Cytoskeleton dynamics during neurotransmitter release. Trends Neurosci. 16:466-472.

    Google Scholar 

  29. Rodríguez Del Castillo, A., Lemaire, S., Tchakarov, L., Jeyapragasan, M., Doucet, J.-P., Vitale, M. L., and Trifaró, J.-M. 1990. Chromaffin cell scinderin: A novel calcium-dependent actin filament severing protein. EMBO J. 19:43052.

    Google Scholar 

  30. Marcu, M. G., Rodríguez Del Castillo, A., Vitale, M. L., and Trifaró, J.-M. 1994. Molecular cloning and functional expression of chromaffin cell scinderin indicates that it belongs to the family of Ca++-dependent F-actin severing proteins. Mol. Cell. Biochem. 141:153-165.

    Google Scholar 

  31. Trifaró, J.-M. and García, A. G. 1995. Molecular and cellular mechanisms in neurosecretion. Pages 281-292, in Cuello, A. C. and Collier, B. (eds.) Pharmacological Sciences: Perspectives for research and therapy in the late 1990s, Birkhäuser Verlag, Basel, Switzerland.

    Google Scholar 

  32. Marcu, M. G., Zhang, L., Elzagallaai, A., and Trifaró, J.-M. 1998. Localization by segmented deletion analysis and functional characterization of a third actin-binding site in domain 5 of scinderin. J. Biol. Chem. 273:3661-3668.

    Google Scholar 

  33. Marcu, M. G., Zhang, L., Nau-Staudt, K., and Trifaró, J.-M. 1996. Recombinant scinderin, an F-actin severing protein, increases calcium-induced release of serotonin from permeabilized platelets, an effect blocked by tow scinderin-derived actin-binding peptides and phosphatidylinositol 4,5-bi phosphate. Blood 87:20-24.

    Google Scholar 

  34. Zhang, L., Marcu, M. G., Nau-Staudt, K., and Trifaró, J.-M. 1996. Recombinant scinderin enhances exocytosis, an effect blocked by two scinderin-derived actin-binding peptides and PIP2. Neuron. 17:287-296.

    Google Scholar 

  35. Trifaró, J.-M., Rosé, S. D., and Marcu, M. G. 2000. Scinderin, a Ca++-dependent actin-severing protein that controls cortical actin network dynamics during secretion. Neurochem. Res. 25:133-144.

    Google Scholar 

  36. Huber, R., Schneider, M., Mayr, J., Römisch, J., and Paques, E. P. 1990. The calcium binding sites in human annexin V by crystal structure analysis at 2.0 Å resolution. FEBS Lett. 275:15-24.

    Google Scholar 

  37. Rodríguez Del Castillo, A., Vitale, M. L., and Trifaró, J.-M. 1992. Ca2+ and pH determine the interaction of chromaffin cell scinderin with phosphatidylserine and phosphatidylinositol 4,5-bi phosphate and its cellular distribution during nicotinicreceptor stimulation and protein kinase C activation. J. Cell. Biol. 119:797-810.

    Google Scholar 

  38. Maekawa, S. and Sakai, H. 1990. Inhibition of actin regulatory activity of the 74-kDa protein from bovine adrenal medulla (adseverin) by some phospholipids. J. Biol. Chem. 265:10940-10942.

    Google Scholar 

  39. Hartwig, J. H., Bokoch, G. M., Carpenter, C. L., Janmey, P. A., Taylor, L. A., Toker, A., and Stossel, T. P. 1995. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82:643-653.

    Google Scholar 

  40. Rhee, S. G., Suh, P. G., Ryu, S. H., and Sang, Y. L. 1989. Studies of inositol phospholipid-specific phospholipase C. Science 244:546-550.

    Google Scholar 

  41. Yu, F.-X., Sun, H.-Q., Janmey, P. A., and Yin, H. L. 1992. Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. J. Biol. Chem. 267:14616-14621.

    Google Scholar 

  42. Janmey, P. A., Lamb, J., Allen, P. G., and Matsudaira, P. T. 1992. Phosphoinositide binding peptides derived from the sequences of gelsolin and villin. J. Biol. Chem. 267:11818-11823.

    Google Scholar 

  43. Chaponnier, C., Janmey, P. A., and Yin, H. 1986. The actin filament severing domain of plasma gelsolin. J. Cell Biol. 103: 1473-1481.

    Google Scholar 

  44. Lejen, T., Skolnik, K., Rosé, S. D., Marcu, M. G., Elzagallaai, A., and Trifaró, J.-M. 2001. An Antisense oligodeoxynucleotide targeted to chromaffin cell scinderin gene decreased scinderin level and inhibited depolarization-induced cortical F-actin disassembly and exocytosis. J. Neurochem. 76:768-777.

    Google Scholar 

  45. Vitale, M. L., Rodríguez Del Castillo, A., and Trifaró, J.-M. 1992. Protein kinase C activation by phorbol esters induces chromaffin cell cortical filamentous actin disassembly and increases the initial rate of the exocytosis in response to nicotinic receptor stimulation. Neuroscience 51:463-474.

    Google Scholar 

  46. Zhang, L., Rodríguez Del Castillo, A., and Trifaró, J.-M. 1995. Histamine-evoked chromaffin cell scinderin redistribution, F-actin disassembly and secretion: In the absence of cortical F-actin disassembly, an increase in intracellular Ca2+ fails to trigger exocytosis. J. Neurochem. 65:1297-1308.

    Google Scholar 

  47. Aderem, A. 1992. Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. Trends in Biochem. Sci. 17:438-443.

    Google Scholar 

  48. Aderem, A. 1992. The MARCKS brothers: a family of protein kinase C substrates. Cell 71:713-716.

    Google Scholar 

  49. Blackshear, P. J. 1993. The MARCKS family of cellular protein kinase C substrates. J. Biol. Chem. 268(3):1501-1504.

    Google Scholar 

  50. Allen, L. A. and Aderem, A. 1995. Protein kinase C regulates MARCKS cycling between the plasma membrane and lyzosomes in fibroblasts. EMBO J. 14:1109-1120.

    Google Scholar 

  51. Allen, L. A. and Aderem, A. 1995. A role for MARCKS, the alpha isozyme of protein kinase C and myosin 1 in zymosan phagocytosis by macrophages. J. Exp. Med. 182:829-840.

    Google Scholar 

  52. Graff, J. M., Young, T. N., Johnson, J. D., and Blackshear, P. J. 1989. Phosphorylation-regulated calmodulin binding to a prominent cellular substrate for protein kinase C. J. Biol. Chem. 264:21818-21823.

    Google Scholar 

  53. McIlroy, B. K., Walters, J. D., Blackshear, P. J., and Johnson, J. D. 1991. Phosphorylation-dependent binding of a synthetic MARCKS peptide to calmodulin. J. Biol. Chem. 266:4959-4964.

    Google Scholar 

  54. Hartwig, J. H., Thelen, M., Rosen, A., Janmey, P. A., Narin, A. C., and Aderem, A. 1992. MARCKS is an actin filament cross linking protein regulated by protein kinase C and calcium-calmodulin. Nature 356:618-622.

    Google Scholar 

  55. Verghese, G. M., Johnson, J. D., Vasulka, C., Haupt, D. M., Stumpo, D. J., and Blackshear, P. J. 1994. Protein kinase C-mediated phosphorylarion and calmodulin binding of recombinant myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein. J. Biol. Chem. 269:9361-9367.

    Google Scholar 

  56. Arbuzova, A., Wang, J., Murray, D., Jacob, J., Cafiso, D. S., and McLaughlin, S. 1997. Kinetics of interaction of the myristoylated alanine-rich C kinase substrate, membranes, and calmodulin. J. Biol. Chem. 272:27167-27177.

    Google Scholar 

  57. Powis, D. A., O'Brien, K. J., Harrison, S. M., Jarvie, P. E., Dunkley, P. R. 1996. Mn2+ can substitute for Ca2+ in causing catecholamine secretion but not for increasing tyrosine hydroxylase phosphorylation in bovine adrenal chromaffin cells. Cell Calcium 19:419-429.

    Google Scholar 

  58. Coffey, E. T., Herrero, I., Sihra, T. S., Sanchez-Prieto, J., and Nicholls, D. G. 1994. Glutamate exocytosis and MARCKS phosphorylation are enhanced by a metabotropic glutamate receptor coupled to a protein kinase C synergistically activated by diacylglycerol and arachidonic acid. J. Neurochem. 63:1303-1310.

    Google Scholar 

  59. Liu, J. P., Engler, D., Funder, J. W., and Robinson, P. J. 1994. Arginine vasopressin (AVP) causes the reversible phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein in the bovine anterior pituitary: Evidence that MARCKS phosphorylation is associated with adrenocorticotropin (ACTH) secretion. Mol. Cel. Endocrinol. 105(2):217-226.

    Google Scholar 

  60. Goodall, A. R., Turner, N. A., Walker, J. H., Ball, S. G., and Vaughan, P. F. 1997. Activation of protein kinase C-alpha and translocation of the myristoylated alanine-rich C-kinase substrate correlate with phorbol ester-enhanced noradrenaline release from SH-SY5Y human neuroblastoma cells. J. Neurochem. 68:392-401.

    Google Scholar 

  61. Elzagallaai, A., Rosé, S. D., and Trifaró, J.-M. 2000. Platelet secretion induced by phorbol esters stimulation is mediated through phosphorylarion of MARCKS: A MARCKS-derived peptide blocks MARCKS phosphorylation and serotonin release without affecting pleckstrin phosphorylation. Blood 95: 894-902.

    Google Scholar 

  62. Rosé, S. D., Lejen, T., Zhang, L., and Trifaró, J.-M. 2001. Chromaffin cell F-actin disassembly and potentiation of catecholamine release in response to proteine kinase C activation by phorbol esters is mediated through myristoylated alanine-rich C kinase substrate phosphorylation. J. Biol. Chem. 276:36757-36763.

    Google Scholar 

  63. Trifaró, J.-M., Rosé, S. D., Lejen, T., and Elzagallaai, A. 2000. Two pathways control chromaffin cell cortical F-actin dynamics during exocytosis. Biochimie 82:339-352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trifaró, JM., Lejen, T., Rosé, S.D. et al. Pathways That Control Cortical F-Actin Dynamics During Secretion. Neurochem Res 27, 1371–1385 (2002). https://doi.org/10.1023/A:1021627800918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021627800918

Navigation