Skip to main content
Log in

Atomistic Modeling of Point Defects and Diffusion in Copper Grain Boundaries

  • Published:
Interface Science

Abstract

The atomic structure of several symmetrical tilt grain boundaries (GBs) in Cu and their interaction with vacancies and interstitials as well as self-diffusion are studied by molecular statics, molecular dynamics, kinetic Monte Carlo (KMC), and other atomistic simulation methods. Point defect formation energy in the GBs is on average lower than in the lattice but variations from site to site within the GB core are very significant. The formation energies of vacancies and interstitials are close to one another, which makes the defects equally important for GB diffusion. Vacancies show interesting effects such as delocalization and instability at certain GB sites. They move in GBs by simple vacancy-atom exchanges or by “long jumps” involving several atoms. Interstitial atoms can occupy relatively open positions between atoms, form split dumbbell configurations, or form highly delocalized displacement zones. They diffuse by direct jumps or by the indirect mechanism involving a collective displacement of several atoms. Diffusion coefficients in the GBs have been calculated by KMC simulations using defect jump rates determined within the transition state theory. GB diffusion can be dominated by vacancies or interstitials, depending on the GB structure. The diffusion anisotropy also depends on the GB structure, with diffusion along the tilt axis being either faster or slower than diffusion normal to the tilt axis. In agreement with Borisov's correlation, the activation energy of GB diffusion tends to decrease with the GB energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion (Wiley, Chichester, 1995).

    Google Scholar 

  2. Y. Mishin, Defect Diffus. Forum 143-147, 1357 (1997).

    Google Scholar 

  3. Y. Mishin, Defect Diffus. Forum 194-199, 1113 (2001).

    Google Scholar 

  4. A.P. Sutton and R.W. Balluffii, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995).

    Google Scholar 

  5. R.W. Balluffi, in Diffusion in Crystalline Solids, edited by G.E. Murch and A.S. Nowick (Academic Press, New York, 1984), pp. 319-377.

    Google Scholar 

  6. Q. Ma, C.L. Liu, J.B. Adams, and R.W. Balluffi, Acta Metall. Mater. 41, 143 (1993).

    Google Scholar 

  7. C.L. Liu and S.J. Plimpton, Phys. Rev. B 51, 4523 (1995).

    Google Scholar 

  8. M.R. Sørensen, Y. Mishin, and A.F. Voter, Phys. Rev. B 62, 3658 (2000).

    Google Scholar 

  9. M. Nomura and J.B. Adams, J. Mater. Res. 7, 3202 (1992).

    Google Scholar 

  10. M. Nomura and J.B. Adams, J. Mater. Res. 10, 2916 (1995).

    Google Scholar 

  11. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Phys. Rev. B 63(2001).

  12. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).

    Google Scholar 

  13. V. Vitek, Crystal Lattice Defects 5, 1 (1974).

    Google Scholar 

  14. Y. Mishin and D. Farkas, Philos. Mag. A 78, 29 (1998).

    Google Scholar 

  15. J.M. Howe, Interfaces in Materials (John Wiley, NY, 1997).

    Google Scholar 

  16. D. Wolf and S. Yip (Eds.), Materials Interfaces: Atomic-Level Structure and Properties (Chapman and Hall, London, 1992).

    Google Scholar 

  17. P. Keblinski, D. Wolf, S.R. Phillpot, and H. Gleiter, Philos. Mag. A 79, 2735 (1999).

    Google Scholar 

  18. J.D. Rittner and D.N. Seidman, Phys. Rev. B 54, 6999 (1996).

    Google Scholar 

  19. J.R. Hu, S.C. Chang, F.R. Chen, and J.J. Kai, Scripta Mater. 45, 463 (2001).

    Google Scholar 

  20. W. Hu, D.A. Molodov, B. Schönfelder, L.S. Shvindlerman, and G. Gottstein, Interface Science 8, 335 (2000).

    Google Scholar 

  21. R.W. Siegel, J. Nucl. Mater. 69-70, 117 (1978).

    Google Scholar 

  22. R.W. Balluffi, J. Nucl. Mater. 69-70, 240 (1978).

    Google Scholar 

  23. H. Ullmaier (Ed.), Properties and Interaction of Atomic Defects in Metals and Alloys, Landolt-Bornstein, New Series, Group III (Springer, Berlin, 1991), Vol. 25, p. 88.

    Google Scholar 

  24. F.W. Young, J. Nucl. Mater. 69-70, 310 (1978).

    Google Scholar 

  25. R.N. Barnett and U. Landman, Phys. Rev. B 44, 3226 (1991).

    Google Scholar 

  26. F. Willaime, Y. Piquet, and B. Legrand, Defect and Diffusion Forum 194-199, 1381 (2001).

    Google Scholar 

  27. G.H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Google Scholar 

  28. G. Henkelman, G. Johannesson, and H. Jonsson, in Theoretical Methods in Condensed Phase Chemistry, edited by S.D. Schwartz, Progress in Theoretical Chemistry and Physics, Ch. 10, Kluwer Academic Publishers (2000), Vol. 5.

  29. H. Jónsson, G. Mills, and K.W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti, and D.F. Coker (World Scientific, Singapore, 1998).

    Google Scholar 

  30. Y. Mishin, M.R. Sørensen, and A.F. Voter, Philos. Mag. A 81, 2591 (2001).

    Google Scholar 

  31. E.A. Guggenheim, Thermodynamics. An Advanced Treatment for Chemistis and Physicists (Elsevier Science, North Holland, 4th ed., 1993).

    Google Scholar 

  32. R.E. Hoffman, Acta Metall. 4, 56 (1956).

    Google Scholar 

  33. J. Sommer, Chr. Herzig, S. Mayer, and W. Gust, Defect Diff. Forum 66-69, 843 (1989).

    Google Scholar 

  34. Y. Mishin and Chr. Herzig, Phil. Mag. A 71, 641 (1995).

    Google Scholar 

  35. Y. Mishin, Philos. Mag. A 72, 1589 (1995).

    Google Scholar 

  36. V.T. Borisov, V.M. Golikov, and G.V. Scherbedinsky, Phys. Met. Metallogr. 17, 80 (1964).

    Google Scholar 

  37. D. Gupta, Metall. Trans. A 8, 1431 (1977).

    Google Scholar 

  38. V. Vitek, Y. Minonishi, and G.J. Wang, J. de Physique 46, 171 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, A., Mishin, Y. Atomistic Modeling of Point Defects and Diffusion in Copper Grain Boundaries. Interface Science 11, 131–148 (2003). https://doi.org/10.1023/A:1021599310093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021599310093

Navigation