Skip to main content
Log in

Quantum Singularity in Quasiregular Spacetimes, as Indicated by Klein-Gordon, Maxwell and Dirac Fields

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Klein-Gordon, Maxwell and Dirac fields are studied in quasiregular spacetimes, those space-times containing a classical quasiregular singularity, the mildest true classical singularity [G. F. R. Ellis and B. G. Schmidt, Gen. Rel. Grav. 8, 915 (1977)]. A class of static quasiregular spacetimes possessing disclinations and dislocations [R. A. Puntigam and H. H. Soleng, Class. Quantum Grav. 14, 1129 (1997)] is shown to have field operators which are not essentially self-adjoint. This class of spacetimes includes an idealized cosmic string, i.e. a four-dimensional spacetime with a conical singularity [L. H. Ford and A. Vilenkin, J. Phys. A: Math. Gen. 14, 2353 (1981)] and a Gal'tsov/Letelier/Tod spacetime featuring a screw dislocation [K. P. Tod, Class. Quantum Grav. 11, 1331 (1994); D. V. Gal'tsov and P. S. Letelier, Phys. Rev. D 47, 4273 (1993)]. The definition of G. T. Horowitz and D. Marolf [Phys. Rev. D52, 5670, (1995)] for a quantum-mechanically singular spacetime is one in which the spatial-derivative operator in the Klein-Gordon equation for a massive scalar field is not essentially self-adjoint. The definition is extended here, in the case of quasiregular spacetimes, to include Maxwell and Dirac fields. It is shown that the class of static quasiregular spacetimes under consideration is quantum-mechanically singular independent of the type of field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Konkowski, D. A. and Helliwell, T. M. (2001). Gen. Rel. Grav. 33, 1131.

    Google Scholar 

  2. Hawking, S. W. and Ellis, G. F. R. (1973). The Large-Scale Structure of Spacetime (Cambridge University Press, Cambridge).

    Google Scholar 

  3. Ellis, G. F. R. and Schmidt, B. G. (1977). Gen. Rel. Grav. 8, 915.

    Google Scholar 

  4. Griffiths, J. B. (1991). Colliding Plane Waves in General Relativity (Oxford University Press, Oxford).

    Google Scholar 

  5. Ellis, G. F. R. and King, A. H. (1976). Commun. Math. Phys. 38, 119.

    Google Scholar 

  6. Konkowski, D. A., Helliwell, T. M., and Shepley, L. C. (1985). Phys. Rev. D 31, 1178.

    Google Scholar 

  7. Ford, L. H. and Vilenkin, A. (1981). J. Phys. A: Math. Gen. 14, 2353.

    Google Scholar 

  8. Gal'tsov, D. V. and Letelier, P. S. (1993). Phys. Rev. D 47, 4273.

    Google Scholar 

  9. Tod, K. P. (1994). Class. Quantum Grav. 11, 1331.

    Google Scholar 

  10. Puntigam, R. A. and Soleng, H. H. (1997). Class. Quantum Gruv. 14, 1129.

    Google Scholar 

  11. Volterra, V. (1907). Ann. Ec. Norm. Sup. 24, 401.

    Google Scholar 

  12. Nabarro, F. R. N. (1967). Theory of Crystal Dislocations (The International Series of Monographs on Physics) (Oxford University Press, Oxford).

    Google Scholar 

  13. Kleman, M. (1980). In Dislocations in Solids, Vol. 5, F. R. N. Naborro, (Ed.)(North-Holland, Amsterdam), p. 243.

    Google Scholar 

  14. Kroner, E. (1981). In Physics of Defects, Les Houches Session 35, R. Balian, M. Kleman, and J.-P. Pourier (Eds.) (North-Holland, Amsterdam).

    Google Scholar 

  15. Gott, J. R. (1985). Astrophys. J. 288, 422.

    Google Scholar 

  16. Hiscock, W. A. (1985). Phys. Rev. D 31, 3288.

    Google Scholar 

  17. Linet, B. (1985). Gen. Rel. Grav. 17, 1109.

    Google Scholar 

  18. Clement, G. (1984). Gen. Rel. Grav. 16, 477.

    Google Scholar 

  19. Deser, S., Jackiw, R., and t'Hooft, G. (1984). Ann. Phys. N. Y. 152, 220.

    Google Scholar 

  20. Brown, J. D. (1988). Lower-Dimensional Gravity (World Scientific, Singapore).

    Google Scholar 

  21. Clement, G. (1985). Int. J. Theor. Phys. 24, 267.

    Google Scholar 

  22. Berger, B. K., Chrusciel, P. T., and Moncrief, V. (1995). Ann. Phys. NY 237, 322.

    Google Scholar 

  23. Konkowski, D. A. and Helliwell, T. M. (1987). Am. J. Phys. 55, 401.

    Google Scholar 

  24. de Padua, A., Parisio-Filho, F., and Moraes, F. (1998). Phvs. Lett. A. 238, 153.

    Google Scholar 

  25. Moraes, F. (1996). Phys. Lett. A. 214, 189.

    Google Scholar 

  26. Ishibashi, A., and Hosoya, A. (1999). Phys. Rev. D 60, 104028.

    Google Scholar 

  27. Reed, M. and Simon, B. (1972). Functional Analysis (Academic Press, New York).

    Google Scholar 

  28. Reed, M. and Simon, B. (1972). Fourier Analysis and Self-Adjointness (Academic Press, New York).

    Google Scholar 

  29. Richtmyer, R.-D. (1978). Principles of Advanced Mathematical Physics, Vol. 1 (Springer, New York).

    Google Scholar 

  30. von Neumann, J. (1929). Math. Ann. 102, 49.

    Google Scholar 

  31. Bonneau, G., Faraut, J., and Valent, G. (2001). Am. J. Phys. 69, 322.

    Google Scholar 

  32. Weyl, H. (1910). Math. Ann. 68, 220.

    Google Scholar 

  33. Kay, B. S. and Studer, U. M. (1991). Commun. Math. Phys. 139, 103.

    Google Scholar 

  34. Horowitz, G. T. and Marolf, D. (1995). Phys. Rev. D 52, 5670.

    Google Scholar 

  35. de Sousa Gerbert, P. and Jackiw, R. (1989). Commun. Math. Phys. 124, 229.

    Google Scholar 

  36. Schweber, S. S. (1961). An Introduction to Relativistic Quantum Field Theory (Row, Peterson, New York).

    Google Scholar 

  37. Bezerra, V. B. (1997). J. Math. Phys. 38, 2553.

    Google Scholar 

  38. Shishkin, G. V. and Kabos, V. D. (1991). Sov. J. Nucl. Phys. 54, 686.

    Google Scholar 

  39. Helliwell, T. M. and Konkowski, D. A. (1986). Phys. Rev. D 34, 1918.

    Google Scholar 

  40. Linet, B. (1987). Phys. Rev. D 35, 536.

    Google Scholar 

  41. Smith, A. G. (1990). In The Formation and Evolution of Cosmic Strings, G. W. Gibbons, S. W. Hawking, and T. Vachaspati (Eds.) (Cambridge University Press, Cambridge).

    Google Scholar 

  42. Pontual, I. and Maraes, F. (1998). Philos. Mag. A 78, 1073.

    Google Scholar 

  43. Matsas, G. E. A. (1990). Phys. Rev. D 42, 2927.

    Google Scholar 

  44. De Lorenci, V. A. and Moreira, E. S. (2000). Phys. Rev. D 63, 027501.

    Google Scholar 

  45. Wald, R. M. (1980). J. Math. Phys. 21, 2802.

    Google Scholar 

  46. Allen, B., Kay, B. S., and Ottewill, A. C. (1996). Phys. Rev. D 53, 6929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helliwell, T.M., Konkowski, D.A. & Arndt, V. Quantum Singularity in Quasiregular Spacetimes, as Indicated by Klein-Gordon, Maxwell and Dirac Fields. General Relativity and Gravitation 35, 79–96 (2003). https://doi.org/10.1023/A:1021307012363

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021307012363

Navigation