Skip to main content
Log in

Transglutaminase-Catalyzed Protein Cross-Linking in the Molecular Program of Apoptosis and Its Relationship to Neuronal Processes

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. One type of transglutaminase is usually accumulated in various forms of naturally occurring cell death and apoptosis. The accumulated enzyme is activated during the death process, leading to the formation of cross-linked protein structures. Degradation of the cross-linked apoptotic bodies results in the elevation of the ε(γ-glutamyl)lysine isodipeptide concentration in body fluids, which may provide a diagnostic tool to monitor the apoptosis rate in various tissues under normal and pathologic conditions.

2. Extensive protein cross-linking may be directly related to the act of killing in some cells. In others, the effect of protein cross-linking is palliative, preventing leakage of macromolecules and enhancing phagocytosis of the dead cells.

3. Tissue transglutaminase has been implicated in some physiologic functions of the nervous system.

4. The molecular machinery of apoptosis is present and easily evoked in neuronal cells.

5. Effector elements of the apoptosis process have been associated with the pathogenesis of neurologic disorders. Tissue transglutaminase, representing one of the effector elements of apoptosis, may be induced and activated in cells following ischemia. It may also participate in the formation of abnormal cell inclusions and Aβ deposits in amyloid plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Allsopp, T. E., Wyatt, S., Paterson, H. F., and Davies, A. M. (1993). The protooncogene bcl-2 can selectively rescue neurotropic factor-dependent neurons from apoptosis. Cell 73:295–307.

    Google Scholar 

  • Ambron, R. T., and Kremzner, L. T. (1982). Post-translational modification of neuronal proteins: evidence for transglutaminase activity in R2, the giant cholinergic neurone of Aplysia. Proc. Natl. Acad. Sci. USA 79:3442–3446.

    Google Scholar 

  • Amendola, A., Gougeon, M.-L., Poccia, F., Bondurand, A., Fesus, L., and Piacentini, M. (1996). Tissue transglutaminase indicates high rate of apoptosis in the immune system of HIV-infected individuals. Proc. Natl. Acad. Sci. USA 93:11057–11062.

    Google Scholar 

  • Ando, M., and Nagata, Y. (1993). Effects of depolarizing agents on transglutaminase activity in superior cervical and nodose ganglia from rats. Mol. Chem. Neuropathol. 19:121–135.

    Google Scholar 

  • Ando, M., Tatematsu, T., Kunii, S., and Nagata, Y. (1994a). Blockade effect of nerve growth on GM1 ganglioside-induced activation of transglutaminase in superior cervical sympathetic ganglia excised from adult rat. Neurosci. Res. 19:373–378.

    Google Scholar 

  • Ando, M., Tatematsu, T., Kusudo, S., Fujita, K., and Nagata, Y. (1994b). Possible involvement of nitric oxide in carbachol-induced activation of transglutaminase in rat superior cervical sympathetic ganglia. Neurosci. Res. 21:267–272.

    Google Scholar 

  • Bredesen, D. E. (1994). Neuronal apoptosis: Genetic and biochemical modulation. In Tomei, L. D., and Cope, F. O. (eds), Apoptosis II: The Molecular Basis of Apoptosis in Disease, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 397–421.

    Google Scholar 

  • Carson, D. A., and Ribeiro, J. M. (1993). Apoptosis and disease. Lancet 341:1251–1254.

    Google Scholar 

  • Davies, A. M. (1993). Promoting motor neuron survival. Cur. Biol. 3:879–881.

    Google Scholar 

  • Dudek, S. M., and Johnson, G. V. W. (1993). Transglutaminase catalyzes the formation of sodium dodecyl sulfate-insoluble, Alz-50-reactive polymers of τ. J. Neurochem. 61:1159–1162.

    Google Scholar 

  • Eitan, S., and Schwartz, M. (1993). Transglutaminase that converts IL-2 into a factor cytotoxic to oligodendrocytes. Science 261:106–108.

    Google Scholar 

  • Eitan, S., Solomon, A., Lavie, V., Yoles, E., Hirschberg, D. L., Belkin, M., and Schwartz, M. (1994). Recovery of visual response of injured adult rat optic nerve treated with transglutaminase. Science 264:1764–1768.

    Google Scholar 

  • Ellis, H. M., Yuan, J., and Horvitz, H. R. (1991). Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7:663–698.

    Google Scholar 

  • Facchiano, F., Benfenati, F., Valtorta, F., and Luini, A. (1993). Covalent modification of synapsin 1 by a tetanus toxin-activated transglutaminase. J. Biol. Chem. 268:4588–4591.

    Google Scholar 

  • Fesus, L. (1993). Biochemical events in naturally occurring forms of cell death. FEBS Lett. 328:1–5.

    Google Scholar 

  • Fesus, L. and Tarcsa, E. (1989). Formation of ɛ(γ-glutamyl)lysine isodipeptide in Chinese hamster ovary cells. Biochem. J. 263:843–849.

    Google Scholar 

  • Fesus, L., Szucs, E. F., Barrett, K. E., Metcalfe, D. D., and Folk, J. E. (1985). Activation of transglutaminase and production of protein-bound γ-glutamylhistamine in stimulated mouse mast cells. J. Biol. Chem. 260:13771–13778.

    Google Scholar 

  • Fesus, L., Davies, P. J. A., and Piacentini, M. (1991a). Molecular mechanisms in the program of cell death by apoptosis. Eur. J. Cell Biol. 56:170–177.

    Google Scholar 

  • Fesus, L., Tarcsa, E., Kedei, N., Autuori, F., and Piacentini, M. (1991b). Degradation of cells dying by apoptosis leads to accumulation of ɛ(γ-glutamyl)lysine isodipeptide in culture fluid and blood. FEBS Lett. 284:109–112.

    Google Scholar 

  • Fesus, L., Szondy, Z., and Uray, I. (1995). Probing the molecular program of apoptosis by cancer chemopreventive agents. J. Cell. Biochem. 22:151–161.

    Google Scholar 

  • Folk, J. E. (1980). Transglutaminases. Annu. Rev. Biochem. 49:517–531.

    Google Scholar 

  • Folk, J. E., and Finlayson, S. (1977). The ɛ(γ-glutamyl)lysine crosslink and the catalytic role of transglutaminase. Adv. Protein Chem. 31:1–133.

    Google Scholar 

  • Friedrich, P., Fesus, L., Tarcsa, E., and Czeh, G. (1991). Protein cross-linking by transglutaminase induced in long-term potentiation in the CA1 region of hippocampal slices. Neuroscience 43:331–334.

    Google Scholar 

  • Gentile, V., Thomazy, V., Piacentini, M., Fesus, L., and Davies, P. J. A. (1992). Transfection of tissue transglutaminase into balb-c 3T3 fibroblasts: Increased cellular adhesion fragmentation. J. Cell Biol. 119:463–474.

    Google Scholar 

  • Gilad, G. M., and Varon, L. E. (1985). Transglutaminase activity in rat brain: Characterization, distribution and changes with age. J. Neurochem. 45:1522–1526.

    Google Scholar 

  • Goedert, M. (1993). Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci. 16:460–465.

    Google Scholar 

  • Greenberg, C. S., Birckbichler, P. J., and Rice, R. H. (1992). Transglutaminases: Multifunctional crosslinking enzymes that stabilize tissues. FASEB J. 5:3071–3077.

    Google Scholar 

  • Gschwind, M., and Huber, G. (1995). Apoptotic cell death induced by β-amyloid1–42 peptide is cell type dependent. J. Neurochem. 65:292–300.

    Google Scholar 

  • Hand, D., Perry, M. J. M., and Haynes, L. W. (1993). Cellular transglutaminase in neural development. Int. J. Dev. Neurosci. 11:709–720.

    Google Scholar 

  • Haynes, L. W., Perry, M. J. M, and Hand, D. (1992). A retinoid-inducible protein in developing cerebellar neurones. Biochem. Soc. Trans. 20:159S.

    Google Scholar 

  • Héron, A., Pollard, H., Dessi, F., Moreau, J., Lasbennes, F., Ben-Ari, Y., and Charriaut-Marlangue, C. (1993). Regional variability in DNA fragmentation after global ischemia evidenced by combined histological and gel electrophoresis observations in the rat brain. J. Neurochem. 61:1973–1976.

    Google Scholar 

  • Ikura, K., Takahata, K., and Sasaki, R. (1993). Cross-linking of a synthetic partial-length (1–28) peptide of the Alzheimer β/A4 amyloid protein by transglutaminase. FEBS Lett. 326:109–111.

    Google Scholar 

  • Iwaki, T., Miyazono, M., Hitotsumatsu, T., and Tateishi, J. (1994). An immunohistochemical study of tissue transglutaminase in gliomas with reference to their cell dying process. Am. J. Pathol. 145:776–781.

    Google Scholar 

  • Kim, I., Gorman, J. J., Park, S., Chung, S., and Steinert, P. (1993). The deduced sequence of the novel protransglutaminase E of human and mouse. J. Biol. Chem. 268:12682–12694.

    Google Scholar 

  • Krajewski, S., Mai, J. K., Krajewska, M., Sikorska, M., Mossakowski, M. J., and Reed, J. C. (1995). Upregulation of bax protein levels in neurons following cerebral ischemia. J. Neurosci. 15:6364–6376.

    Google Scholar 

  • Linnik, M. D., Zobrist, R. H., and Hatfield, M. D. (1993). Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 24:2002–2009.

    Google Scholar 

  • Martin, D. P., Schmidt, R. E., DiStefano, P. S., Lowry, O. H., Carter, J. G., and Johnson, E. M., Jr. (1988). Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J. Cell Biol. 106:829–844.

    Google Scholar 

  • Martin, D. R., Ito, A., Horigome, K., Lampe, P. A., and Johnson, E. M., Jr. (1992). Biochemical characterization of programmed cell death in NGF-deprived sympathetic neurons. J. Neurobiol. 23:1205–1220.

    Google Scholar 

  • Masu, Y., Wolf, E., Holtmann, B., Sendtner, M., Brem, G., and Thoenen, H. (1993). Disruption of the CNTF gene results in motor neuron degeneration. Nature 365:27–33.

    Google Scholar 

  • Matesz, K., Fesus, L., Polgar, E., and Torok, Zs. (1991). Expression of tissue transglutaminase in the developing nervous system. Eur. J. Neurosci. 4S:290.

    Google Scholar 

  • Melino, G., Annichiarico-Petruzzelli, M., Piredda, L., Candi, E., Gentile, V., Davies, P. J. A., and Piacentini, M. (1994). Tissue transglutaminase and apoptosis: Sense and antisense transfection studies in human neuroblastoma cells. Mol. Cell. Biol. 14:6584–6592.

    Google Scholar 

  • Miller, M. L., and Johnson, G. V. W. (1995). Transglutaminase cross-linking of the τ protein. J. Neurochem. 65:1760–1770.

    Google Scholar 

  • Nagata, S., and Golstein, P. (1995). The fas death factor. Science 267:1449–1455.

    Google Scholar 

  • Okamoto, M., Matsumoto, M., Ohtsuki, T., Taguchi, A., Mikoshiba, K., Yanagihara, T., and Kamada, T. (1993). Internucleosomal DNA cleavage involved in ischemia-induced neuronal death. Biochem. Biophys. Res. Commun. 196:1356–1362.

    Google Scholar 

  • Oppenheim, R. W. (1985). Naturally occurring cell death during neural development. Trends Neurosci. 17:487–493.

    Google Scholar 

  • Oppenheim, R. W., Prevette, D., Tytell, M., and Homma, S. (1990). Naturally occurring and induced neuronal death in the chick embryo in vivo requires protein and RNA synthesis: Evidence for the role of cell death genes. Dev. Biol. 138:104–113.

    Google Scholar 

  • Oppenheim, R. W., Qin-Wei, Y., Prevette, D., and Yan, Q. (1992). Brain-derived neurotropic factor rescues developing avian motoneurons from cell death. Nature 360:755–757.

    Google Scholar 

  • Oppenheim, R. W., Houenou, L. J., Johnson, J. E., Lin, L.-F., Li, L., Lo, A. C., Newsome, A. L., Prevette, D. M., and Wang, S. (1995). Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 373:344–346.

    Google Scholar 

  • Osborne, A. B., and Schwartz, L. M. (1994). Essential genes that regulate apoptosis. Trends Cell Biol. 4:394–399.

    Google Scholar 

  • Paschen, W., Röhn, G., and Schmidt-Kastner, R. (1990). Transglutminase activity in reversible cerebral ischemia in the rat. Neurosci. Lett. 110:232–236.

    Google Scholar 

  • Pastuszko, A., Wilson, D. F., and Erecinska, M. (1986). A role of transglutaminase in neurotransmitter release by rat brain synaptosomes. J. Neurochem. 46:599–508.

    Google Scholar 

  • Piacentini, M., Martinet, N., Beninati, S., and Folk, J. A. (1988). Free and protein-conjugated polyamines in mouse epidermal cells. J. Biol. Chem. 263:3790–3794.

    Google Scholar 

  • Piacentini, M., Davies, P. J. A., and Fesus, L. (1994). Tissue transglutaminase in cells undergoing apoptosis. In Tomei, L. D., and Cope, F. O. (eds.), Apoptosis II: The Molecular Basis of Apoptosis in Disease, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 143–163.

    Google Scholar 

  • Piredda, L., Amendola, A., Colizzi, V., Davies, P. J. A., Farrace, M. G., Fraziano, M., Gentile, V., Uray, I., Piacentini, M., and Fesus, L. (1997). Lack of “tissue” transglutaminase protein cross-linking leads to leakage of macromolecules from dying cells: relationship to development of autoimmunity in MRL lpr/lpr mice. Cell Death Differ. 4:463–472.

    Google Scholar 

  • Raff, M. C., Barbes, B. A., Burne, J. F., Coles, H. S., Ishizaki, Y., and Jacobson, D. (1993). Programmed cell death and the control of cell survival: Lessons from the nervous system. Science 262:695–700.

    Google Scholar 

  • Rasmussen, L. K., Sorensen, E. S., Petersen, T. E., Gliemann, J., and Jensen, P. H. (1994). Identification of glutamine and lysine residues in Alzheimer amyloid βA4 peptide responsible for transglutaminase-catalyzed homopolimerization and cross-linking to α 2M receptor. FEBS Lett. 338:161–166.

    Google Scholar 

  • Roy, M., Mahadevan, M. S., McLean, M., Shutler, G., Yaraghi, Z., Farahani, R., Baird, S., Bresner-Johnston, A., Lefebvre, C., Kang, X., Salih, M., Aubry, H., Tamai, K., Guan, X., Ioannou, P., Crawford, T. O., de Jong, P. J., Surh, L., Ikeda, J.-E., Korneluk, R. G., and MacKenzie, A. (1995). The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80:167–178.

    Google Scholar 

  • Schwartz, L. M., Smith, S. W., Jones, M. E. E., and Osborne, B. A. (1993). Do all programmed cell death occur via apoptosis? Proc. Natl. Acad. Sci. USA 90:980–984.

    Google Scholar 

  • Sei, Y., Von Lubitz, K. J., Basile, A. I., Borner, M. M., Lin, R. L., Skolnick, P., and Fossom, L. H. (1994). Internucleosomal DNA fragmentation in gerbil hippocampus following forebrain ischemia. Neurosci. Lett. 171:179–182.

    Google Scholar 

  • Selkoe, D. J., Abraham, C., and Ihara, Y. (1982). Brain transglutaminase: in vitro crosslinking of human neurofilament proteins into insoluble polymers. Proc. Natl. Acad. Sci. USA 79:6070–6074.

    Google Scholar 

  • Sendtner, M., Holtmann, B., Kolbeck, R., Thoenen, H., and Barde, Y. A. (1992). Brain-derived neurotropic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360:757–759.

    Google Scholar 

  • Steller, H. (1995). Mechanisms and genes of cellular Suicide. Science 267:1445–1448.

    Google Scholar 

  • Thomazy, V., and Fesus, L. (1989). Differential expression of tissue transglutaminase in human cells. Cell Tissue Res. 255:215–224.

    Google Scholar 

  • Villa, P., Miehe, M., Sensenbrenner, M., and Pettmann, B. (1994). Synthesis of specific proteins in trophic factor-deprived neurons undergoing apoptosis. J. Neurochem. 62:1468–1475.

    Google Scholar 

  • Wyllie, A. H., Kerr, J. F. R., and Currie, A. R. (1980). Cell death: the significance of apoptosis. Int. Rev. Cytol. 68:251–306.

    Google Scholar 

  • Yan, Q., Elliot, J., and Snider, W. D. (1992). Brain-derived neurotropic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 360:753–755.

    Google Scholar 

  • Zatloukal, K., Fesus, L., Denk, H., Tarcsa, E., Spurej, G., and Böck, G. (1992). High amount of ɛ(γ-glutamyl)lysine cross-links in Mallory bodies. Lab. Invest. 66:774–777.

    Google Scholar 

  • Zhong, L.-T., Sarafian, T., Kane, D. J., Charles, A. C., Mah, S. P., Edwards, R. H., and Bredesen, D. E. (1993). Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc. Natl. Acad. Sci. USA 90:4533–4537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fesus, L. Transglutaminase-Catalyzed Protein Cross-Linking in the Molecular Program of Apoptosis and Its Relationship to Neuronal Processes. Cell Mol Neurobiol 18, 683–694 (1998). https://doi.org/10.1023/A:1020638020024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020638020024

Navigation