Skip to main content
Log in

Oxidation barriers on SiC particles for use in aluminium matrix composites manufactured by casting route: Mechanisms of interfacial protection

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper is centred on a study of the interface reaction mechanisms which participate in the fabrication of an aluminium-SiC composite by a casting route, when reinforcements (particles, in this case) have been previously coated by oxidation with a SiO2 layer. The studies, which were carried out using transmission electron microscopy and differential scanning calorimetry, made it possible to propose a model of action of the SiO2 barrier in relation to the coating thickness and the reaction time. The first reaction that occurred in this SiC-SiO2-molten Al system was the formation of an Al-Si-O glassy phase which progressively consumed the SiO2 barrier, reducing the matrix-particle interface energy and favouring wetting of the SiC surfaces. When the oxidation coating was completely consumed, the SiC was preferentially dissolved by the glassy phase, inside which the formation of amorphous carbon was detected. These studies also show that carbon enrichment of the reaction layer activated the precipitation of metallic impurities (such as Fe or Cu) in the reaction. Longer reaction times (8 h) could also favour crystallization of the glassy phase to form mullite and the formation of microcrystalline alumina at the reaction interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. MOGILEVSKY, A. WERNER and H. J. DUDEK, Mater. Sci. Eng. A 242 (1998) 235.

    Google Scholar 

  2. V. LAURENT, D. CHATAIN and N. EUSTATHOPOLOUS, ibid., 135 (1991) 89.

    Google Scholar 

  3. Z. FAN, Z. X. GUO and B. CANTOR, Composites Part A: Applied Science and Manufacturing 28 (1997) 131.

    Google Scholar 

  4. L. C. KWANG and B. DERBY, in Proceedings of Topical Symposium III Advanced Fiber Composites of the 8th CIMTEC-World Ceramics Congress and Forum on New Materials. 28 June-4 July 1994; Florence, Italy, p. 179.

  5. S. Q. GUO, Y. KAGAWA, Y. TANAKA and C. MASUDA, Acta Materialia, 46 (1998) 4941.

    Google Scholar 

  6. S. M. JENG, J. M. YANG and J. A. GRAVES, J. Mater. Res. 8 (1993) 905.

    Google Scholar 

  7. T. D. MCGARRY, M. J. PINDERA and F. E. WAWNER, Composites Engineering 5 (1995) 951.

    Google Scholar 

  8. B. S. MAJUMDAR, Materials Science and Engineering 259 (1999) 171.

    Google Scholar 

  9. A. UREÑA, J. M. GÓMEZ DE SALAZAR, L. GIL, M. D. ESCALERA and J. L. BALDOMERO, Journal of Microscopy 196 (1999) 124.

    Google Scholar 

  10. A. UREÑA, P. RODRIGO, L. GIL, M. D. ESCALERA and J. L. BALDONEDO, J. Mater. Sci. 36 (2001) 419.

    Google Scholar 

  11. Idem., ibid. 36 (2001) 429.

  12. J. P. ROCHER, J. M. QUENISSET and R. NASLAIN, ibid. 24 (1989) 2697.

    Google Scholar 

  13. Y. L. LIU and B. KINDL, Scripta Metallurgica et Materialia, 27 (1992) 1367.

    Google Scholar 

  14. B. KINDL, Y. H. TENG and Y. L. LIU, Composites 25 (1994) 671.

    Google Scholar 

  15. M. SUERY, G. L'ESPERANCE, B. D. HONG, L. NGUYEN-THANH and F. BORDEAUX, J. Mater. Eng. and Perform. 2 (1993).

  16. P. TRESPAILLE-BARRAU and M. SUERY, Materials Science and Technology 10 (1994) 497.

    Google Scholar 

  17. J. C. LEE, J. I. LEE and H. I. LEE, J. Mater. Sci. Lett. 15 (1996) 1539.

    Google Scholar 

  18. K. T. KIM, M. W. KO and C. H. LEE, Journal of the Korean Institute of Metals and Materials 31 (1993) 1487.

    Google Scholar 

  19. R. ASTHANA and P. K. ROHATGI, J. Mater. Sci. Lett. 12 (1993) 442.

    Google Scholar 

  20. W. S. CHUNG, S. Y. CHANG and S. J. LIN, Plating & Surface Finishing 83 (1996) 68.

    Google Scholar 

  21. A. MANZANO, E. NAVA and C. VAZQUEZ, Scripta Metallurgica et Materialia 29 (1993) 1241.

    Google Scholar 

  22. R. ASTHANA and P. K. ROHATGI, Key Engineering Materials 79/80 (1993) 47.

    Google Scholar 

  23. A. UREÑA, E. E. MARTÍNEZ, E. CRIADO and L. GIL, Mater. Sci. Tech., in press.

  24. A. E. HUGHES, M. M. HEDGES and B. A. SEXTON, J. Mater. Sci. 25 (1990) 4856.

    Google Scholar 

  25. J. WEISS, H. L. LUKAS, J. LORENZ, G. PETZOW and H. KRIEG, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 5 (1981) 125.

    Google Scholar 

  26. I. M. LOW and R. MCPHERSON, J. Mater. Sci. 24 (1989).

  27. A. MORTESEN and Y. JIN, Int. Mat. Reviews. 37 (1992) 101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ureña, A., Escalera, M.D. & Gil, L. Oxidation barriers on SiC particles for use in aluminium matrix composites manufactured by casting route: Mechanisms of interfacial protection. Journal of Materials Science 37, 4633–4643 (2002). https://doi.org/10.1023/A:1020612819045

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020612819045

Keywords

Navigation