Skip to main content
Log in

Distances and volumina for graphs

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

It has long been realized that connected graphs have some sort of geometric structure, in that there is a natural distance function (or metric), namely, the shortest-path distance function. In fact, there are several other natural yet intrinsic distance functions, including: the resistance distance, correspondent “square-rooted” distance functions, and a so‐called “quasi‐Euclidean” distance function. Some of these distance functions are introduced here, and some are noted not only to satisfy the usual triangle inequality but also other relations such as the “tetrahedron inequality”. Granted some (intrinsic) distance function, there are different consequent graph-invariants. Here attention is directed to a sequence of graph invariants which may be interpreted as: the sum of a power of the distances between pairs of vertices of G, the sum of a power of the “areas” between triples of vertices of G, the sum of a power of the “volumes” between quartets of vertices of G, etc. The Cayley–Menger formula for n-volumes in Euclidean space is taken as the defining relation for so-called “n-volumina” in terms of graph distances, and several theorems are here established for the volumina-sum invariants (when the mentioned power is 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.T. Balaban, Topological indices based on topological distances in molecular graphs, Pure Appl. Chem. 55 (1983) 199–206.

    CAS  Google Scholar 

  2. L.M. Blumenthal, New theorems and methods in determinant theory, Duke Math. J. 2 (1936) 396–404.

    Article  Google Scholar 

  3. L.M. Blumenthal, Distance Geometry (Chelsea, New York, 1970).

    Google Scholar 

  4. F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Reading, MA, 1989).

    Google Scholar 

  5. A. Cayley, A theorem on the geometry of position, Cambridge Math. J. 2 (1841) 267–271.

    Google Scholar 

  6. K.L. Collins, Factoring distance matrix polynomials, Discrete Math. 122 (1993) 103–112.

    Article  Google Scholar 

  7. J.K. Doyle and J.E. Graver, Mean distance in a graph, Discrete Math. 17 (1977) 147–154.

    Article  Google Scholar 

  8. P.G. Doyle and J.L. Snell, Random Walks and Electrical Networks (Math. Assoc. Amer., Washington, DC, 1984).

    Google Scholar 

  9. R.C. Entringer and D.E. Jackson, Distance in graphs, Czechoslovak Math. J. 26 (1976) 283–296.

    Google Scholar 

  10. M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298–305.

    Google Scholar 

  11. M. Fiedler, A geometric approach to the Laplacian matrix of a graph, in: Combinatorial and Graph-Theoretical Problems in Linear Algebra, eds. R.A. Brualdi, S. Friedland and V. Klee (Springer, Berlin, 1993) pp. 73–98.

    Google Scholar 

  12. R.L. Graham, A.J. Hoffman and H. Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977) 85–88.

    Google Scholar 

  13. R.L. Graham and L. Lovasz, Distance matrix polynomials of trees, Adv. Math. 29 (1978) 60–88.

    Article  Google Scholar 

  14. I. Gutman, Y.-N. Yeh, S.-L. Lee and Y.-L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651–661.

    CAS  Google Scholar 

  15. H. Hosoya, On some counting polynomials in chemistry, Discrete Appl. Math. 19 (1988) 239–257.

    Article  Google Scholar 

  16. D.J. Klein, Geometry, graph metrics, and Weiner, Comm. Math. Chem. 35 (1997) 7–27.

    Google Scholar 

  17. D.J. Klein, I. Lukovits and I. Gutman, On the definition of the hyper-Wiener index for cycle-containing tructures, J. Chem. Inf. Comput. Sci. 35 (1995) 50–52.

    Article  CAS  Google Scholar 

  18. D.J. Klein and M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81–95.

    Article  Google Scholar 

  19. I. Lukovits, A note on a formula for the hyper-Wiener index of some trees, J. Chem. Inf. Comput. Sci. 34 (1994) 1079–1081.

    Article  CAS  Google Scholar 

  20. K. Menger, Untersuchungen uber allgemeine Metrik, Math. Ann. 100 (1928) 75–163.

    Article  Google Scholar 

  21. K. Menger, New foundation of Euclidean geometry, Amer. J. Math. 53 (1931) 721–745.

    Google Scholar 

  22. R. Merris, An edge version of the matrix-tree theorem and the Wiener index, Linear and Multilinear Algebra 25 (1989) 291–296.

    Google Scholar 

  23. B. Mohar, Eigenvalues, diameter, and mean distance in graphs, Graphs Combin. 7 (1991) 53–64.

    Article  Google Scholar 

  24. D.S. Mitoinovic, J.E. Pecaric and V. Volenec, Recent Advances in Geometric Inequalities (Kluwer, Dordrecht, 1989) p. 551.

    Google Scholar 

  25. J. Plesnik, On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984) 1–21.

    Google Scholar 

  26. O.E. Polansky and D. Bonchev, The Wiener number of graphs. I, Comm. Math. Chem. 21 (1986) 133–186.

    CAS  Google Scholar 

  27. M. Randić, Novel molecular description for structure-property studies, Chem. Phys. Lett. 211 (1993) 478–483.

    Article  Google Scholar 

  28. M. Randić, Molecular shape profiles, J. Chem. Inf. Comput. Sci. 35 (1995) 373–382.

    Article  Google Scholar 

  29. D.H. Rouvray, The role of the topological distance matrix in chemistry, in: Mathematical and Computational Concepts in Chemistry, ed. N. Trinajstić (Ellis Horwood, Chichester, 1986) pp. 295– 306.

    Google Scholar 

  30. L.W. Shapiro, An electrical lemma, Math. Mag. 60 (1987) 36–38.

    Article  Google Scholar 

  31. N. Trinajstić, Chemical Graph Theory (CRC Press, Boca Raton, FL, 1983).

    Google Scholar 

  32. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.

    Article  CAS  Google Scholar 

  33. H. Wiener, Correlation of heats of isomerization and differences in heats of vaporization of isomers, J. Am. Chem. Soc. 69 (1947) 2636–2638.

    Article  CAS  Google Scholar 

  34. W.A. Wilson, A relation between metric and Euclidean spaces, Amer. J. Math. 54 (1932) 505–517.

    Google Scholar 

  35. H.-Y. Zhu and D.J. Klein, Graph-geometric invariants for molecular structures, J. Chem. Inf. Comput. Sci. 36 (1996) 1067–1075.

    Article  CAS  Google Scholar 

  36. H.-Y. Zhu, D.J. Klein and I. Lukovits, Extensions of the Wiener number, J. Chem. Inf. Comput. Sci. 36 (1996) 420–428.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D., Zhu, H. Distances and volumina for graphs. Journal of Mathematical Chemistry 23, 179–195 (1998). https://doi.org/10.1023/A:1019108905697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019108905697

Keywords

Navigation