Skip to main content
Log in

Microscopic Behavior of the Classical Electron in the Absence of External Forces

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A system of nonlinear integro-differential equations is derived for the motion of the classical electron with a rigid and spherically symmetric 3D gaussian distribution of charge. The equations are analyzed for stability around the state of rest and of uniform rectilinear motion with velocity small with respect to the velocity of light. The extremely high-frequency and radiationless micro-oscillations that the electron executes when disturbed from the equilibrium states show the inconsistency of the Abraham-Lorentz equation and of all concepts associated with this equation, like the notion that the electron may have a mass of electromagnetic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Erber, Fortschr. Phys. 9, 343-392 (1961). For more recent review papers, see, Electromagnetism: Paths to Research, D. Teplitz, ed. (Plenum, New York, 1982), pp. 183-210, 211-296.

    Google Scholar 

  2. J. D. Jackson,Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), pp. 790-791.

    Google Scholar 

  3. D. Bohm and M. Weinstein, Phys. Rev. 74, 1789 (1948).

    Google Scholar 

  4. E. J. Moniz and D. H. Sharp,Phys. Rev. D 10, 1133 (1974).

    Google Scholar 

  5. E. J. Moniz and D. H. Sharp, Phys. Rev. D 15, 2850 (1977).

    Google Scholar 

  6. H. A. Lorentz, Theory of Electrons, 2nd edn. (1915) (Dover, New York, 1952).

    Google Scholar 

  7. J. D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), pp. 786-790.

    Google Scholar 

  8. B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic, New York, 1961).

    Google Scholar 

  9. L. D. Landau, J. Phys. USSR 10, 25 (1946).

    Google Scholar 

  10. See, for instance, N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973).

    Google Scholar 

  11. E. Schrödinger, Zitz. Ber. Preuss. Akad. 24, 418 (1930).

    Google Scholar 

  12. J. A. Lock, Am. J. Phys. 47, 797 (1979).

    Google Scholar 

  13. A. O. Barut and A. J. Bracken, Phys. Rev. D 23, 2454 (1981).

    Google Scholar 

  14. J. Daboul, Int. J. Theor. Phys. 11, 145 (1974).

    Google Scholar 

  15. F. V. Hartemann and N. C. Luhmann, Jr., Phys. Rev. Lett. 74, 1107 (1995).

    Google Scholar 

  16. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, translation, A. Jeffrey, ed., 5th edn. (Academic, New York, 1994).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maroli, C., Cornelli, M. Microscopic Behavior of the Classical Electron in the Absence of External Forces. Foundations of Physics 28, 913–929 (1998). https://doi.org/10.1023/A:1018865129486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018865129486

Keywords

Navigation