Skip to main content
Log in

The Effect of an Oxide Dispersion on the Critical Al Content in Fe-Al Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxide-dispersed iron aluminides with Al contentsranging from 10 to 28 at.% were oxidized in air attemperatures between 600 and 1300°C in order todetermine the critical Al content necessary to form a protective, external alumina scale. AY2O3-Al2O3dispersion, performed similarly to anAl2O3 dispersion, indicated littleeffect of Y on the critical Al content. Compared toingot-processed iron aluminides, the addition of an oxide dispersion reduced thecritical Al content at 900°C. This reduction isattributed to the finer grain size in theoxide-dispersed Fe-Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Justusson, V. F. Zackay, and E. R. Morgan, Trans. Am. Soc. Met. 49, 905 (1957).

    Google Scholar 

  2. D. Hardwick and G. Wallwork, Rev. High Temp. Met. 4(1), 47 (1978).

    Google Scholar 

  3. R. B. Setterlund and G. R. Prescott, Corrosion 17, 103 (1961).

    Google Scholar 

  4. C. Sykes and J. W. Bampfylde, J. Iron Steel Inst. Adv. Copy 12, 22 (1934).

    Google Scholar 

  5. F. Saegusa and L. Lee, Corrosion 22, 168 (1966).

    Google Scholar 

  6. W. E. Boggs, J. Electrochem. Soc. 118, 906 (1971).

    Google Scholar 

  7. P. Tomaszewicz and G. R. Wallwork, Rev. High-Temp. Met. 4, 75 (1978).

    Google Scholar 

  8. M. Lambertin and G. Beranger, in High Temperature Oxidation and Sulfidation Processes, W. Embury, ed. (CIM, Ottawa, Ontario, 1990), pp. 93–100.

    Google Scholar 

  9. J. H. DeVan and P. F. Tortorelli, Corros. Sci. 35, 1065 (1993).

    Google Scholar 

  10. J. H. DeVan and P. F. Tortorelli, Mater. High Temp. 11, 30 (1993).

    Google Scholar 

  11. K. Natesan and R. N. Johnson, in Heat Resistant Materials II, K. Natesan, P. Ganesann, and G. Lai, eds. (ASM International, Materials Park, Ohio 1995), pp. 591–595.

    Google Scholar 

  12. R. Prescott and M. J. Graham, Oxid. Met. 38, 73 (1992).

    Google Scholar 

  13. D. P. Whittle and J. Stringer, Phil. Trans. Roy. Soc. London A295, 309 (1980).

    Google Scholar 

  14. J. Stringer, Mater. Sci. Eng. A120, 129 (1989).

    Google Scholar 

  15. E. Lang, ed., The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys (Elsevier Applied Science, London, 1989).

    Google Scholar 

  16. W. E. King, ed., The Reactive Element Effect on High Temperature Oxidation—After Fifty Years, Mat. Sci. Forum 43 (Transactions Technical Publications, Switzerland, 1989).

  17. D. P. Moon, Mater. Sci. Technol. 5, 754 (1989).

    Google Scholar 

  18. A. Strawbridge and P. Y. Hou, Mat. High Temp. 12, 177 (1994).

    Google Scholar 

  19. B. A. Pint, Oxid. Met. 45, 1 (1996).

    Google Scholar 

  20. J. Stringer, B. A. Wilcox, and R. I. Jaffee, Oxid. Met. 5, 11 (1972).

    Google Scholar 

  21. J. Stringer and I. G. Wright, Oxid. Met. 5, 59 (1972).

    Google Scholar 

  22. C. S. Giggins and F. S. Pettit, Metall. Trans. 2, 1071 (1971).

    Google Scholar 

  23. I. G. Wright, in Proceedings of the 1974 Gas Turbine Materials in the Marine Environment Conference, J. W. Fairbanks and I. Machlan, eds. (Battelle, Columbus, Ohio, 1975), pp. 357–377.

    Google Scholar 

  24. D. P. Whittle, M. E. El-Dahshan, and J. Stringer, Corros. Sci. 17, 879 (1977).

    Google Scholar 

  25. O. T. Goncel, D. P. Whittle, and J. Stringer, Oxid. Met. 15, 287 (1981).

    Google Scholar 

  26. C. Wagner, Corros. Sci. 5, 751 (1965).

    Google Scholar 

  27. F. H. Stott, G. C. Wood, and J. Stringer, Oxid. Met. 44, 113 (1995).

    Google Scholar 

  28. B. A. Pint, K. B. Alexander, and P. F. Tortorelli, in High Temperature Ordered Intermetallics VI, Symp. Proc. vol. 364, J. Horton, S. Hanada, I. Baker, R. D. Noebe, and D. Schwartz, eds. (MRS, Pittsburgh, Pennsylvania, 1995), pp. 1315–1320.

    Google Scholar 

  29. B. A. Pint, P. F. Tortorelli, and I. G. Wright, Mat. Corros. 47, 663 (1996).

    Google Scholar 

  30. F. A. Golightly, F. H. Stott, and G. C. Wood, J. Electrochem. Soc. 126, 1035 (1979).

    Google Scholar 

  31. B. A. Pint, A. J. Garratt-Reed, and L. W. Hobbs, Mat. High Temp. 13, 3 (1995).

    Google Scholar 

  32. B. A. Pint, Oxid. Met. 49, 531 (1998).

    Google Scholar 

  33. P. Tomaszewicz and G. R. Wallwork, Oxid. Met. 19, 165 (1983).

    Google Scholar 

  34. D. R. Baer and M. D. Merz, Metall. Trans. 11A, 1973 (1980).

    Google Scholar 

  35. G. J. Yurek, D. Eisen, and A. Garratt-Reed, Metall. Trans. 13A, 473 (1982).

    Google Scholar 

  36. D. Caplan, Corros. Sci. 6, 509 (1966).

    Google Scholar 

  37. G. O. Lloyd, S. R. J. Saunders, B. Kent, and A. Fursey, Corros. Sci. 17, 269 (1977).

    Google Scholar 

  38. A. S. Khanna and J. B. Gnanamoorthy, Oxid. Met. 23, 17 (1985).

    Google Scholar 

  39. M. S. Seltzer and B. A. Wilcox, Metall. Trans. 3, 2357 (1972).

    Google Scholar 

  40. M. S. Seltzer, Metall. Trans. 3, 3259 (1972).

    Google Scholar 

  41. M. J. Bennett, B. A. Bellamy, C. F. Knights, N. Meadows, and N. J. Eyre, Mat. Sci. Eng. 69, 359 (1985).

    Google Scholar 

  42. J. M. Hampikian and D. I. Potter, Oxid. Met. 38, 125 (1992).

    Google Scholar 

  43. P. Y. Hou and J. Stringer, J. Electrochem. Soc. 134, 1836 (1987).

    Google Scholar 

  44. P. Y. Hou and J. Stringer, Mat. Sci. Eng. 87, 295 (1987).

    Google Scholar 

  45. P. Y. Hou and J. Stringer, Oxid. Met. 29, 45 (1988).

    Google Scholar 

  46. M. J. Maloney, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1988.

  47. M. J. Maloney and G. J. Yurek, in Compositesy Corrosion-Coatings of Advanced Materials, Proc. vol. IMAM-4, S. Kimura, A. Kobayashi, S. Umekawa, K. Nii, Y. Saito, and M. Yoshimura eds. (Materials Research Society, Pittsburgh, Pennsylvania, 1989), pp. 383–386.

    Google Scholar 

  48. B. A. Pint, P. F. Tortorelli, and I. G. Wright, Mat. High Temp. in press (1997).

  49. P. F. Tortorelli, G. M. Goodwin, M. Howell, and J. H. DeVan, in Heat Resistant Materials II, K. Natesan, P. Ganesan, and G. Lai, eds. (ASM International, Materials Park, Ohio, 1995), pp. 585–590.

    Google Scholar 

  50. P. F. Tortorelli, I. G. Wright, G. M. Goodwin, and M. Howell, in Elevated Temperature Coatings: Science and Technology II, N. B. Dahotre and J. M. Hampikian, eds. (The Minerals, Metals, and Materials Society, Warrendale, Pennsylvania, 1996), pp. 175–185.

    Google Scholar 

  51. J. H. DeVan, in Heat Resistant Materials, K. Natesan and D. J. Tillack, eds. (ASM, Materials Park, Ohio, 1991), pp. 235–241.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pint, B.A., Leibowitz, J. & Devan, J.H. The Effect of an Oxide Dispersion on the Critical Al Content in Fe-Al Alloys. Oxidation of Metals 51, 181–197 (1999). https://doi.org/10.1023/A:1018862404800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018862404800

Navigation