Skip to main content
Log in

β1,4-Galactosyltransferase and Lactose Biosynthesis: Recruitment of a Housekeeping Gene from the Nonmammalian Vertebrate Gene Pool for a Mammary Gland Specific Function

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

β1,4-galactosyltransferase (β4GalT-I)is a constitutively expressed trans-Golgi enzyme, widelydistributed in vertebrates, which synthesizes theβ4-N-acetyllactosamine structure commonly found in glycoconjugates. In mammals β4GalT-Ihas been recruited for a second biosynthetic function,the production of lactose; this function takes placeexclusively in the lactating mammary gland. Inpreparation for lactose biosynthesis, β4GalT-I enzymelevels are increased significantly. We show that mammalshave evolved a two-step mechanism to achieve thisincrease. In step one there is a switch to the use of a second transcriptional start site,regulated by a stronger, mammary gland-restrictedpromoter. The transcript produced is distinguished fromits housekeeping counterpart by the absence of 180 nt of 5′-untranslated sequence. In step two,this truncated transcript is translated moreefficiently, relative to the major transcript expressedin all other somatic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Brew (1970). Lactose synthetase: evolutionary origins, structure and control. Essays Biochem. 6:93-118.

    Google Scholar 

  2. J. A. Grobler, K. R. Rao, S. Pervaiz, and K. Brew (1994). Sequences of two highly divergentcanine type c lysozymes: implications for the evolutionary origins of the lysozyme/α-lactalbumin superfamily. Arch. Biochem. Biophys. 313:360-366.

    Google Scholar 

  3. N. L. Shaper, J. Meurer, D. H. Joziasse, T-D. D. Chou, E. J. Smith, R. L. Schnaar, and J. H. Shaper (1997). The chicken genome contains two functional nonallelic β1,4-galactosyltransferase genes: Chromosomal assignment to syntenic regions tracks fate of the two gene lineages in the human genome. J. Biol. Chem. 272:31389-31399.

    Google Scholar 

  4. R. L. Hill, K. Brew, T. C. Vanaman, I. P. Trayer, and P. Mattock (1968). The structure, function and evolution of α-lactalbumin. Brookhaven Symp. Biol. 21:139-154.

    Google Scholar 

  5. H. Schachter (1991). Enzymes associated with glycosylation. Curr. Opin. Struc. Biol. 1:755-765.

    Google Scholar 

  6. T. A. Beyer and R. L. Hill (1982). Glycosylation pathway in the biosynthesis of nonreducing terminal sequences in oligosaccharides of glycoproteins. In M. Horowitz (ed.), The Glycoconjugates Vol. III, Academic Press, New York, pp. 25-45.

    Google Scholar 

  7. J. T. Powell and K. Brew (1974). Glycosyltransfer ases in the Golgi membranes of onion stem. Biochem. J. 142:203-209.

    Google Scholar 

  8. V. Brodbeck, W. L. Denton, N. Tanahashi, and K. E. Ebner (1967). The isolation and identification of the βprotein of lactose synthetase as α-lactalbumin. J. Biol. Chem. 242:1391-1397.

    Google Scholar 

  9. K. Brew, T. C. Vanaman, and R. L. Hill (1968). The role of α-lactalbumin and the A protein in lactose synthetase; a unique mechanism for the control of a biological reeaction. Proc. Natl. Acad. Sci. U.S.A. 59:491-497.

    Google Scholar 

  10. M. Sasaki, W. N. Eigel, and T. W. Keenan (1978). Lactose and major milk proteins are present in secretory vesicle-rich fractions from lactating mammary gland. Proc. Natl. Acad. Sci. U.S.A. 75:5020-5024.

    Google Scholar 

  11. R. W. Turkington, K. Brew, T. C. Vanaman, and R. L. Hill (1968). The hormonal control of lactose synthetase in the developing mouse mammary gland. J. Biol. Chem. 243:3382-3387.

    Google Scholar 

  12. R. D. Palmiter (1969). Hormonal induction and regulation of lactose synthetase in mouse mammary gland. Biochem. J. 113:409-417.

    Google Scholar 

  13. G. F. Hollis, J. G. Douglas, N. L. Shaper, and J. H. Shaper (1989). Genomic structure of murine β1,4-galactosyltransferase. Biochem. Biophys. Res. Commun. 162:1069-1075.

    Google Scholar 

  14. N. L. Shaper, G. F. Hollis, J. G. Douglas, I. R. Kirsch, and J. H. Shaper (1988). Characterization of the full-length cDNA for murine β1, 4-galactosyltransferase: Novel features at the 5′ end predict two translational start sites at two in-frame AUGs. J. Biol. Chem. 263:10420-10428.

    Google Scholar 

  15. R. N. Russo, N. L. Shaper, and J. H. Shaper (1990). Bovine β1, 4-galactosyltransferase: Two sets of mRNA transcripts encode two forms of the protein with different amino-terminal domains: In vitro translation experiments demonstrate that both the short and the long forms of the enzyme are type II membrane-bound glycoproteins. J. Biol. Chem. 265:3324-3331.

    Google Scholar 

  16. K. A. Masri, H. E. Appert, and M. N. Fukuda (1988). Identification of the full-length coding sequenced for human galactosyltransferase (β-N-acetylglucosamine (β1,4)galactosyltransferase. Biochem. Biophys. Res. Commun. 157:657-663.

    Google Scholar 

  17. L. Mengle-Gaw, M. F. McCoy-Haman, and D. C. Tiemeier (1991). Genomic structure and expression of human β1,4-galactosyltransferase. Biochem. Biophys. Res. Commun. 176:1269-1276.

    Google Scholar 

  18. R. N. Russo, N. L. Shaper, D J. Taatjes, and J. H. Shaper (1992). β1,4-galactosyltransferase: A short NH2-terminal fragment that includes the cytoplasmic and transmembrane domain is sufficient for Golgi retention. J. Biol. Chem. 267:9241-9247.

    Google Scholar 

  19. K. J. Colley (1997). Golgi localization of glycosyltransferases: More questions than answers. Glycobiology 7:1-13.

    Google Scholar 

  20. A. Harduin-Lepers, J. H. Shaper, and N. L. Shaper (1993). Characterization of two cis-regulatory regions in the murine β1,4-galactosyltransferase gene: Evidence for a negative regulatory element that controls initiation at the proximal site. J. Biol. Chem. 268:14348-14359.

    Google Scholar 

  21. N. L. Shaper, A. Harduin-Lepers, and J. H. Shaper (1994). Male germ cell expression of murine β 4-galactosyltransferase— A 796-base pair genomic region, containing two cAMP-responsive element (CRE)-like elements, mediates male germ cell-specific expression in transgenic mice. J. Biol. Chem. 269:25165-25171.

    Google Scholar 

  22. E. Reichmann, R. Ball, B. Groner, and R. R. Friis (1989). New mammary epithelial and fibroblastic cell clones in coculture form structures competent to differentiate functionally. J. Cell Biol. 108:1127-1138.

    Google Scholar 

  23. R. Strange, F. Li, R. R. Friis, E. Reichmann, B. Haenni, and P. H. Burri (1991). Mammary epithelial differentiation in vitro: Minimum requirements for a functional response to hormonal stimulation. Cell Growth Differ. 2:549-559.

    Google Scholar 

  24. J. D. Saffer, S. P. Jackson, and M. B. Annarella (1991). Developmental expression of Sp1 in the mouse. Mol. Cell. Biol. 11:2189-2199.

    Google Scholar 

  25. B. Rajput, N. L. Shaper, and J. H. Shaper (1996). Transcriptional regulation of murine β1,4-galactosyltransferase in somatic cells: Analysis of a gene that serves both a housekeeping and a mammary gland-specific function. J. Biol. Chem. 271:5131-5142.

    Google Scholar 

  26. H. Lubon and L. Henninghausen (1988). Conserved region of the rat α-lactalbumin promoter is a target site for protein binding in vitro. Biochem. J. 256:391-396.

    Google Scholar 

  27. C. J. Watson, K. E. Gordon, M. Robertson, and A. J. Clark (1991). Interaction of DNA-binding proteins with a milk protein gene promoter in vitro: Identification of a mammary gland-specific factor. Nucl. Acids Res. 19:6603-6610.

    Google Scholar 

  28. S. Li and J. M. Rosen (1995). Nuclear factor 1 and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol. Cell Biol. 15:2063-2070.

    Google Scholar 

  29. S. Mink, E. Hartiag, P. Jennewein, W. Doppler, and A. C. B. Cato (1992). A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NF1 and a novel transcription factor, mammary cell-activating factor. Mol. Cell Biol. 12:4906-4918.

    Google Scholar 

  30. J. Mellentin-Michelotti, S. John, W. D. Pennie, T. Williams, and G. L. Hager (1994). The 5′enhancer of the mouse mammary tumor virus long terminal repeat contains a functional AP-2 element. J. Biol. Chem. 269:31983-31990.

    Google Scholar 

  31. M. Kozak (1992). Translational regulation. Ann. Rev. Cell Biol. 8:197-225.

    Google Scholar 

  32. N. Sonnenberg (1994). mRNA translation: Influence of the 5′ and 3′-untranslated regions. Curr. Opin. Genet. Devel. 4:310-315.

    Google Scholar 

  33. M. Charron, J. Shaper, and N. Shaper (1998). The increased level of β1,4-galactosyltransferase required for lactose biosynthesis is achieved in part by translational control. (submitted).

  34. N. L. Shaper, J. H. Shaper, V. Bertness, H. Chang, I. R. Kirsch, and G. F. Hollis (1986). The human galactosyltransferase gene in on chromosome 9 at band p13. Somatic Cell Mol. Genet. 12:477-478.

    Google Scholar 

  35. N. L. Shaper, J. H. Shaper, M. Peyser, and C. A. Kozak (1990). Localization of the gene for β1,4-galactosyltransferase to a position in the centromeric region of mouse chromosome 4. Cytogenet. Cell Genet. 54:172-174.

    Google Scholar 

  36. G. D. Schuler et al. (1996). A gene map of the human genome. Science 274:540-546.

    Google Scholar 

  37. N.-W. Lo, J. H. Shaper, J. Pevsner, and N. L. Shaper (1998). The expanding β1,4-galactosyltransferase gene family: Messages from the databanks. Glycobiology 8:517-526.

    Google Scholar 

  38. R. Almeida, M. Amado, L. David, S. B. Levery, E. H. Holmes, G. Merkx, A. G. Van Kessel, E. Rygaard, H. Hassan, E. Bennett, and H. Clausen (1997). A family of β4-galactosyltransferases: Cloning and expression of two novel UDP-galactose:β-N-acetylglucosamine β1,4-galactosyltransferases, β4Gal-T2 and β4Gal-T3. J. Biol. Chem. 272:31979-31991.

    Google Scholar 

  39. M. Asano, K. Furukawa, M. Kido, S. Matsumoto, Y. Umesaki, N. Kochibe, and Y. Iwakura (1997). Growth retardation and early death of β1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J. 16:1850-1857.

    Google Scholar 

  40. Q. Lu, P. Hasty, and B. D. Shur (1997). Targeted mutation in β1,4-galactosyltransferase leads to pituitary insufficiency and neonatal lethality. Devel. Biol. 181:257-267.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaper, N.L., Charron, M., Lo, NW. et al. β1,4-Galactosyltransferase and Lactose Biosynthesis: Recruitment of a Housekeeping Gene from the Nonmammalian Vertebrate Gene Pool for a Mammary Gland Specific Function. J Mammary Gland Biol Neoplasia 3, 315–324 (1998). https://doi.org/10.1023/A:1018719612087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018719612087

Navigation