Skip to main content
Log in

Actin filament mechanics in the laser trap

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Numerous biological processes, including muscular contraction, depend upon the mechanical properties of actin filaments. One such property is resistance to bending (flexural rigidity, EI). To estimate EI, we attached the ends of fluorescently labelled actin filaments to two microsphere‘handles’ captured in independent laser traps. The positions of the traps were manipulated to apply a range of tensions (0--8 pN)to the filaments via the microsphere handles. With increasing filament tension, the displacement of the microspheres was inconsistent with a microsphere-filament system that is rigid. We maintain that this inconsistency is due to the microspheres rotating in the trap and the filaments bending near their attachments to accommodate this rotation. Fitting the experimental data to a simple model of this phenomena, we estimate actin's EI to be ×15 × 103 pN nm2, a value within the range of previously reported results, albeit using a novel method. These results both: support the idea that actin filaments are more compliant than historically assumed; and, indicate that without appropriately pretensioning the actin filament in similar laser traps, measurements of unitary molecular events (e.g. myosin displacement) may be significantly underestimated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASHKIN, A. (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–82.

    Google Scholar 

  • BLOCK, S. M. (1995) One small step for myosin. Nature 378, 132–3.

    Article  PubMed  CAS  Google Scholar 

  • BREMER, A. & AEBI, U. (1992) The structure of the f-actin filament and the actin molecule. Curr. Opin. Cell Biol. 4, 20–6.

    Article  PubMed  CAS  Google Scholar 

  • CHU, S. (1991) Laser manipulation of atoms and particles. Science 253, 861–6.

    CAS  PubMed  Google Scholar 

  • EGELMAN, E. H. (1985) The structure of f-actin. J. Muscle Res. Cell Motil. 6, 129–51.

    Article  PubMed  CAS  Google Scholar 

  • FEYNMAN, R. P., LEIGHTON, R. B. & SANDS, M. L. (1964) The Feynman Lectures on Physics, Vol. 2.Reading: Addison-Wesley.

    Google Scholar 

  • FINER, J. T., SIMMONS, R. M. & SPUDICH, J. A. (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–19.

    Article  PubMed  CAS  Google Scholar 

  • FINER, J. T., MEHTA, A. D. & SPUDICH, J. A. (1995) Characterization of single actin-myosin interactions. Biophys. J. 68, 291s–7s.

    PubMed  CAS  Google Scholar 

  • FORD, L. E., HUXLEY, A. F. & SIMMONS, R. M. (1981) The relation between stiffness and filament overlap in stimulated frog muscle fibres. J. Physiol. 311, 219–49.

    PubMed  CAS  Google Scholar 

  • FRISCH-FAY, R. (1962) Flexible Bars. Washington: Butterworths.

    Google Scholar 

  • GITTES, F., MICKEY, B., NETTLETON, J. & HOWARD, J. (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4), 923–34.

    Article  PubMed  CAS  Google Scholar 

  • GOLDMAN, Y. E. & HUXLEY, A. F. (1994) Actin compliance: are you pulling my chain? Biophys. J. 67, 2131–6.

    PubMed  CAS  Google Scholar 

  • HARRIS, R. A. & HEARST, J. E. (1965) On polymer dynamics. J. Chem. Phys. 44(7), 2595–602.

    Article  Google Scholar 

  • HIGUCHI, H., YANAGIDA, T. & GOLDMAN, Y. E. (1995) Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Biophys. J. 69, 1000–10.

    PubMed  CAS  Google Scholar 

  • HUXLEY, H. E., STEWART, A., SOSA, H. & IRVING, T. (1994) X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys. J. 67, 2411–21.

    PubMed  CAS  Google Scholar 

  • ISAMBERT, H., VENIER, P., MAGGS, A. C., FATTOUM, A., KASSAB, R., PANTALONI, D. & CARLIER, M. (1995) Flexibility of actin filaments derived from thermal fluctuations. J. Biol. Chem. 270, 11437–44.

    Article  PubMed  CAS  Google Scholar 

  • KABSCH, W. & VANDEKERCKHOVE, J. (1992) Structure and function of actin. Annu. Rev. Biophys. Biomol. Struct. 21, 49–76.

    Article  PubMed  CAS  Google Scholar 

  • KAS, J., STREY, H., BARMANN, M. & SACKMANN, E. (1993) Direct measurement of the wave-vector-dependent bending stiffness of freely flickering actin filaments. Europhys. Lett. 21(8), 865–70.

    Google Scholar 

  • KISHINO, A. & YANAGIDA, T. (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–7.

    Article  PubMed  CAS  Google Scholar 

  • KOJIMA, H., ISHIJIMA, A. & YANAGIDA, T. (1994) Direct measurements of stiffness of single actin filaments with and without tropomyosin by in vitronanomanipulation. Proc. Natl Acad. Sci. USA 91, 12962–6.

    Article  PubMed  CAS  Google Scholar 

  • LANDAU, L. D. & LIFSHITZ, E. M. (1958) Statistical Physics. London: Pergamon Press Ltd.

    Google Scholar 

  • MARGOSSIAN, S. S. & LOWEY, S. (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle. In Methods Enzymol, Vol. 85. Structural and Contractile Proteins. (edited by FREDERIKSEN, D. W. & CUNNINGHAM, L. W.) New York: Academic Press.

    Google Scholar 

  • MIYATA, H., HAKOZAKI, H., YOSHIKAWA, H., SUZUKI, N., KINOSITA, K., NISHIZAKA, T. & ISHIWATA, S. (1994) Stepwise motion of an actin filament over a small number of heavy meromyosin molecules is revealed in an in vitro motility assay. J. Biochem. 115, 644–7.

    PubMed  CAS  Google Scholar 

  • MOLLOY, J. E., BURNS, J. E., KENDRICK-JONES, J., TREGEAR, R. T. & WHITE, D. C. S. (1995) Movement and Force produced by a single myosin head. Nature 378, 209–12.

    Article  PubMed  CAS  Google Scholar 

  • NAGASHIMA, H. & ASAKURA, S. (1980) Dark-field light microscopic study of the flexibility of f-actin complexes. J. Mol. Biol. 136, 169–82.

    Article  PubMed  CAS  Google Scholar 

  • NISHIZAKA, T., MIYATA, H., YOSHIKAWA, H., ISHIWATA, S. & KINOSITA, K. (1995) Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251–4.

    Article  PubMed  CAS  Google Scholar 

  • OOSAWA, F. (1977) Actin-actin bond strength and the conformational change of f-actin. Biorheology 14, 11–19.

    PubMed  CAS  Google Scholar 

  • PARDEE, J. D. & SPUDICH, J. A. (1982) Purification of muscle actin. In Methods Enzymol, Vol. 85. Structural and Contractile Proteins. (edited by FREDERIKSEN, D. W. & CUNNINGHAM, L. W.) New York: Academic Press.

    Google Scholar 

  • SVOBODA, K. & BLOCK, S. M. (1994) Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–85.

    Article  PubMed  CAS  Google Scholar 

  • SVOBODA, K., SCHMIDT, C. F., SCHNAPP, B. J. & BLOCK, S. M. (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–7.

    Article  PubMed  CAS  Google Scholar 

  • VANBUREN, P., WORK, S. S. & WARSHAW, D. M. (1994) Enhanced force generation by smooth muscle myosin in vitro. Proc. Natl Acad. Sci. USA 91, 202–5.

    Article  PubMed  CAS  Google Scholar 

  • VANBUREN, P. GUILFORD, W. H., KENNEDY, G., WU, J. & WARSHAW, D. M. (1995) Smooth muscle myosin: a high force-generating molecular motor. Biophys. J. 68, 256s–9s.

    PubMed  CAS  Google Scholar 

  • WAKABAYASHI, K., SUGIMOTO, Y., TANAKA, H., UENO, Y., TAKEZAWA, Y. & AMEMIYA, Y. (1994) X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 67, 2422–35.

    Article  PubMed  CAS  Google Scholar 

  • WARSHAW, D. M., DEROSIERS, J. M., WORK, S. S. & TRYBUS, K. M. (1990) Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J. Cell Biol. 111, 453–63.

    Article  PubMed  CAS  Google Scholar 

  • YANAGIDA, T., NAKASE, M., NISHIYAMA, K. & OOSAWA, F. (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60.

    Article  PubMed  CAS  Google Scholar 

  • YIN, H., WANG, M. D., SVOBODA, K., LANDICK, R., BLOCK, S. M. & GELLES, J. (1995) Transcription against an applied force. Science 270, 1653–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DUPUIS, D.E., GUILFORD, W.H., WU, J. et al. Actin filament mechanics in the laser trap. J Muscle Res Cell Motil 18, 17–30 (1997). https://doi.org/10.1023/A:1018672631256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018672631256

Keywords

Navigation