Skip to main content
Log in

Rigorous Estimates of the Tails of the Probability Distribution Function for the Random Linear Shear Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In previous work Majda and McLaughlin, and Majda computed explicit expressions for the 2Nth moments of a passive scalar advected by a linear shear flow in the form of an integral over R N. In this paper we first compute the asymptotics of these moments for large moment number. We are able to use this information about the large-N behavior of the moments, along with some basic facts about entire functions of finite order, to compute the asymptotics of the tails of the probability distribution function. We find that the probability distribution has Gaussian tails when the energy is concentrated in the largest scales. As the initial energy is moved to smaller and smaller scales we find that the tails of the distribution grow longer, and the distribution moves smoothly from Gaussian through exponential and “stretched exponential.” We also show that the derivatives of the scalar are increasingly intermittent, in agreement with experimental observations, and relate the exponents of the scalar derivative to the exponents of the scalar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, 3d ed (New York, McGraw-Hill, 1979).

    Google Scholar 

  2. R. A. Antonia and K. R. Sreenivasan, Log-normality of temperature dissipation in a turbulent boundary layer, Phys. Fluids 20:1800 (1977).

    Google Scholar 

  3. E. Balkovsky and G. Falkovich, Two complementary descriptions of intermittency, Phys. Rev. E 57:R1231–R1234 (1998).

    Google Scholar 

  4. E. Balkovsky and A. Fouxon, “Universal long-time properties of Lagrangian statistics in he Batchelor regime and their application to the passive scalar problem,” Electronic preprint chao-dyn/9905020v2.

  5. J. C. Bronski and R. M. McLaughlin, Passive scalar intermittency and the ground state of Schrödinger operators, Phys. Fluids 9:181–190 (1997).

    Google Scholar 

  6. T. Carleman, Sur le problème des moments, Comptes Rendus 174:1680–1682 (1922).

    Google Scholar 

  7. B. Castaing, Y. Gagne, and E. J. Hopfinger, Velocity probability distribution functions of high Reynolds number turbulence, Physica D 46:177–200 (1990).

    Google Scholar 

  8. B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X-Z. Wu, S. Zaleski, and G. Zanetti, Scaling of hard thermal turbulence in Rayleigh-Be–nard convection, J. Fluid Mech. 204:1–30 (1989).

    Google Scholar 

  9. S. Chen and R. H. Kraichnan, Simulations of a randomly advected passive scalar field, Physics of Fluids 10:2867–2884 (1998).

    Google Scholar 

  10. H. Chen, S. Chen, and R. H. Kraichnan, Probability distribution of a stochastically advected scalar field, Phys. Rev Lett. 63:2657–2660 (1989).

    Google Scholar 

  11. M. Chertkov, Instanton for random advection, Phys. Rev. E 55:2722–2735 (1997).

    Google Scholar 

  12. M. Chertkov, G. Falkovich, and I. Kolokolov, Intermittent dissipation of a scalar in turbulence, Phys. Rev. Lett. 80:2121–2124 (1998).

    Google Scholar 

  13. M. Chertkov, I. Kolokolov, and M. Vergassola, Inverse cascade and internittency of passive scalar in one-dimensional smooth flow, Phys. Rev. E 56:5483–5499 (1997).

    Google Scholar 

  14. M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: analytic solution, Phys. Rev. E 51:5609–5627 (1995).

    Google Scholar 

  15. E. S. C. Ching, Probabilities for temperature differences in Rayleigh–Bénard convection, Phys. Rev. A 44:3622–3629 (1991).

    Google Scholar 

  16. E. S. C. Ching and Y. Tu, Passive scalar fluctuations with and without a mean gradient: A numerical study, Phys. Rev. E 49:1278–1282 (1994).

    Google Scholar 

  17. A. J. Chorin, Vorticity and Turbulence, Number 103 in Applied Mathematical Science (Springer-Verlag, New York, 1994).

    Google Scholar 

  18. J. M. Deutsch, Generic behavior in linear systems with multiplicative noise, Phys. Rev. E 48:R4179–R4182 (1993).

    Google Scholar 

  19. J. P. Gollub, J. Clarke, M. Gharib, B. Lane, and O. N. Mesquita, Fluctuations and transport in a stirred fluid with a mean gradient, Phys. Rev. Lett. 67:3507–3510 (1991).

    Google Scholar 

  20. M. Holzer and E. Siggia, Skewed, exponential pressure distributions from Gaussian velocities, Phys. Fluids A 5:2525–2532 (1993).

    Google Scholar 

  21. M. Holzer and E. Siggia, Turbulent mixing of a passive scalar, Phys. Fluids 6:1820–1837 (1994).

    Google Scholar 

  22. M. Holzer and E. Siggia, Erratum: “Turbulent mixing of a passive scalar,” Phys. Fluids 7:1519 (1995).

    Google Scholar 

  23. P. Kailasnath, K. R. Sreenivasan, and G. Stolovitzky, Probability density of velocity increments in turbulent flows, Phys. Rev. Lett. 68:2766–2769 (1992).

    Google Scholar 

  24. A. R. Kerstein, Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields, J. Fluid Mech. 231:361–394 (1991).

    Google Scholar 

  25. R. H. Kraichnan, Models of intermittency in hydrodynamic turbulence, Phys. Rev. Lett. 65:575–578 (1990).

    Google Scholar 

  26. R. H. Kraichnan, Phys. Fluids 11:945 (1968).

    Google Scholar 

  27. T. Kriecherbauer and K. T-R. McLaughlin, “Strong asymptotics of polynomials orthogonal with respect to Freud weights,” Preprint.

  28. J. C. Larue and P. A. Libby, Temperature fluctuations in a plane turbulent wake, Phys. Fluids 17:1956 (1974).

    Google Scholar 

  29. A. J. Majda, The random uniform shear layer: all explicit example of turbulent diffusion with broad tail probability distributions, Phys. Fluids A 5:1963–1970 (1993).

    Google Scholar 

  30. A. J. Majda, Explicit inertial range renormalization theory in a model for turbulent diffusion, J. Statist. Phys. 73:515–542 (1993).

    Google Scholar 

  31. A. Majda and P. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena, Physics Reports 314:237–574 (1999).

    Google Scholar 

  32. R. M. McLaughlin and A. J. Majda, An explicit example with non-Gaussian probability distribution for nontrivial scalar mean and fluctuation, Phys. Fluids 8:536 (1996).

    Google Scholar 

  33. R. M. McLaughlin, “Turbulent Diffusion” Ph.D. thesis, Program in Applied and Computational Mathematics (Princeton University, 1994).

  34. R. T. Pierrehumbert, Personal Communications.

  35. R. T. Pierrehumbert, “Lattice models of advection-diffusion,” preprint.

  36. R. R. Prasad and K. R. Sreenivasan, Quantitative three-dimensional imaging and the structure of passive scalar fields in fully turbulent flows, J. Fluid Mech. 216:1 (1990).

    Google Scholar 

  37. A. Pumir, A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient, Phys. Fluids 6:2118–2132 (1994).

    Google Scholar 

  38. A. Pumir, B. Shraiman, and E. Siggia, Exponential tails and random advection, Phys. Rev. Lett. 66:2984 (1991).

    Google Scholar 

  39. M. Reed and B. Simon, Mathematical Methods in Physics (San Diego, Academic Press, 1980).

    Google Scholar 

  40. L. Rubel (with J. Colliander), Entire and Meromorphic Functions (New York, Springer, 1996).

    Google Scholar 

  41. Z. S. She and S. A. Orszag, Physical model of intermittency in turbulence: Inertial range non-Gaussian statistics, Phys. Rev. Lett. 66:1701–1704 (1991).

    Google Scholar 

  42. J. A. Shohat and J. D. Tamarkin, The Problem of Moments (New York, American Mathematical Society, 1943).

    Google Scholar 

  43. B. I. Shraiman and E. Siggia, Lagrangian path integrals and fluctuations in random flow, Phys. Rev. E 49:2912–2927 (1994).

    Google Scholar 

  44. B. Simon, “The classical moment problem as a self-adjoint finite difference operator,” electronic preprint, http: front.math.ucdavis.edu/math-ph/9906008 (1999).

  45. Ya. G. Sinai and V. Yakhot, Limiting probability distributions of a passive scalar in a random velocity field, Phys. Rev. Lett. 63:1962–1964 (1989).

    Google Scholar 

  46. D. T. Son, Turbulent decay of a passive scalar in the Batchelor limit: Exact results from a quantum mechanical approach, Phys. Rev. E 59:R3811–R3814 (1999).

    Google Scholar 

  47. K. R. Sreenivasan, Fluid turbulence, Rev. Mod. Phys. 71:383–395 (1999).

    Google Scholar 

  48. K. R. Sreenivasan, Evolution of the centerline probability density function of temperature in a plane turbulent wake, Phys. Fluids 24:1232 (1981).

    Google Scholar 

  49. K. R. Sreenivasan and R. A Antonia, The phenomenology of small-scale turbulence, Ann. Rev. Fluid Mech. 29:435–472 (1997).

    Google Scholar 

  50. S. T. Thoroddsen and C. W. Van Atta, Exponential tails and skewness of density-gradient probability density functions in stably stratified turbulence, J. Fluid Mech. 244:547–566 (1992).

    Google Scholar 

  51. Widder, The Laplace Transform (Princeton University Press, Princeton, 1972).

    Google Scholar 

  52. V. Yakhot, S. Orszag, S. Balachandar, E. Jackson, Z-S. She, and L. Sirovich, Phenomenological theory of probability distributions in turbulence, J. Sci. Comp. 5:199–221 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronski, J.C., McLaughlin, R.M. Rigorous Estimates of the Tails of the Probability Distribution Function for the Random Linear Shear Model. Journal of Statistical Physics 98, 897–915 (2000). https://doi.org/10.1023/A:1018639928526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018639928526

Navigation