Skip to main content
Log in

Thermal stability of transition phases in zirconia-doped alumina

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Alumina was prepared from an aqueous salt solution by homogeneous precipitation followed by calcination in air. Dependence of the thermal stability of transition phases on the presence of a zirconia dopant and on autoclave treatment prior to calcination was investigated using X-ray diffraction (XRD), differential thermal analysis coupled with thermogravimetric analysis (DTA–TGA) and transmission electron microscope (TEM) analysis. Homogeneous precipitation produced an amorphous trihydrate precipitate; the autoclave treatment converted this to crystalline boehmite (monohydrate). The zirconia was soluble in the transition alumina but was insoluble in α-Al2O3 so that phase transformation to α-Al2O3 was accompanied by a phase separation to form an alumina-zirconia nanocomposite. The thermal stability of the transition phases was increased both by the dopant and by the autoclave treatment. A combination of both parameters yielded the most stable transition alumina, which withstood 1 h at 1200°C without transformation to α-Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. C. STUMPF, A. S. RUSSELL, J. W. NEWSOME and C. M. TUCKER, Ind. Engng. Chem. 42 (1950) 1398.

    Article  CAS  Google Scholar 

  2. G. ERVIN, Jr, Acta Crystallogr. 5 (1952) 103.

    Article  CAS  Google Scholar 

  3. H. SAALFELD, Clay Min. Bull. 3 (1985) 249.

    Google Scholar 

  4. A. J. LEONARD, F. VAN CAUWELAERT and J. J. FRIPIAT, J. Phys. Chem. 71 (1967) 695.

    Article  CAS  Google Scholar 

  5. P. A. BADKAR and J. E. BAILEY, J. Mater. Sci. 11 (1976) 1794.

    Article  CAS  Google Scholar 

  6. S. J. WILSON, Proc. Brit. Ceram. Soc. 28 (1979) 281.

    Google Scholar 

  7. S. J. WILSON and J. D. C. McCONNELL, J. Solid State Chem. 34 (1980) 315.

    Article  CAS  Google Scholar 

  8. H. S. SANTOS, P. K. KIYOHARA and P. S. SANTOS, Ceram. Int. 20 (1994) 175.

    Article  Google Scholar 

  9. T. FUKUI and M. HORI, J. Mater. Sci. Lett. 13 (1994) 413.

    Article  CAS  Google Scholar 

  10. A. UENO, in Proceeding of the 11th Symposium on Catalytic Combustion, Tokyo, May 1991, (1991) p. 18.

  11. Y. MIZUSHIMA and M. HORI, in Proceedings of the Eurogel ’91 Conference, edited by S. Vilminot, R. Nass and H. Schmidt, Saarbrucken, Germany, 1991 (Elsevier, Amsterdam, 1992) p. 195201.

    Google Scholar 

  12. P. BURTIN, J. P. BRUNELLE, M. PIJOLAT and M. SOUSTELLE, Appl. Catal. 34 (1987) 225.

    Article  CAS  Google Scholar 

  13. Idem, ibid. 34 (1987) 239.

  14. R. K. ILER, J. Amer. Ceram. Soc. 47 (1964) 339.

    Article  CAS  Google Scholar 

  15. B. BEGUIN, M. E. GARBOWSKI and M. PRIMET, J. Catal. 127 (1991) 595.

    Article  CAS  Google Scholar 

  16. M. MACHIDA, K. EGUCHI and H. ARAI, ibid. 103 (1987) 385.

    Article  CAS  Google Scholar 

  17. G. GROPPI, C. CRISTIANI, P. FORZATTI and M. BELLOTTO, J. Mater. Sci. 29 (1994) 3441.

    Article  CAS  Google Scholar 

  18. R. BRACE and E. MATIJEVIC, J. Inorg. Nucl. Chem. 35 (1973) 3691.

    Article  CAS  Google Scholar 

  19. M. D. SACKS, T.-Y. TSENG and S. Y. LEE, Ceram. Bull. 63 (1984) 301.

    CAS  Google Scholar 

  20. B. C. LIPPENS and J. H. DE BOER, Acta Crystallogr. 17 (1964) 1312.

    Article  CAS  Google Scholar 

  21. D. S. TUCKER, J. Amer. Ceram. Soc. 68 (1985) C163.

    Article  CAS  Google Scholar 

  22. M. L. BALMER, F. F. LANGE and G. C. LEVI, ibid. 77 (1994) 2069.

    Article  CAS  Google Scholar 

  23. O. YAMAGUCHI, M. SHIRAI and M. YOSHINAKA, ibid. 71 (1988) C510.

    CAS  Google Scholar 

  24. E. A. PUGAR and E. D. MORGAN, ibid. 69 (1986) C120.

    Article  Google Scholar 

  25. M. R. GALLAS and G. P. PIERMARINI, ibid. 77 (1994) 2917.

    Article  CAS  Google Scholar 

  26. J. R. WYNNYCKYJ and C. G. MORRIS, Metall. Trans. B 16 (1985) 345.

    Google Scholar 

  27. D. S. TUCKER, E. J. JENKINS and J. J. HREN, J. Electron Microsc. Technol. 2 (1985) 29.

    Article  CAS  Google Scholar 

  28. F. W. DYNYS and J. W. HALLORAN, J. Amer. Ceram. Soc. 65 (1982) 442.

    Article  CAS  Google Scholar 

  29. F. OUDET, P. COURTINE and A. VEJUX, J. Catal. 114 (1988) 112.

    Article  CAS  Google Scholar 

  30. B. DJURIČIČ, S. PICKERING, D. McGARRY, P. GLAUDE, P. TAMBUYSER and K. SCHUSTER, Ceram. Int. 21 (1995) 195.

    Article  Google Scholar 

  31. F. R. CHEN, G. COUDURIER, J. F. JOLY and J. C. VEDRIN, J. Catalysis 143 (1993) 616.

    Article  CAS  Google Scholar 

  32. J. LIVAGE, K. DOI and C. MAZIERES, J. Amer. Ceram. Soc. 51 (1968) 349.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DJURICIC, B., PICKERING, S., GLAUDE, P. et al. Thermal stability of transition phases in zirconia-doped alumina. Journal of Materials Science 32, 589–601 (1997). https://doi.org/10.1023/A:1018567230733

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018567230733

Keywords

Navigation