Skip to main content
Log in

Effect of interlayer anions on the physicochemical properties of zinc–aluminium hydrotalcite-like compounds

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc–aluminium hydrotalcite-like compounds (ZnAlAn-–HT) with a Zn/Al atomic ratio 2.0 and An- = CO2-3, Cl-, NO-3 and SO2-4, were synthesized by coprecipitation under low supersaturation. Their physicochemical properties were studied using powder X-ray diffraction (PXRD), infrared (IR) and laser Raman (LR) spectra, thermogravimetry (TG), differential scanning calorimetry (DSC), evolved gas analysis (EGA), 27Al MAS NMR, BET surface area and pore-size determination. The PXRD of the synthesized samples showed that the crystallinity was affected by the nature of the anions present in the interlayer space. The IR and LR studies revealed that except the NO-3 ion, the symmetry of these interlayer anions was reduced upon intercalation. The TG, DSC and EGA results showed two or three stages of weight loss corresponding to the removal of the interlayer water, structural water and the anion, respectively. The activation energy, Ea, for the decomposition process was found to decrease in the order ZnAlCO3–HT>ZnAlSO4–HT>ZnAlCl–HT>ZnAlNO3–HT. Formation of a pentacoordinated Al (AlV) in addition to the octahedral (AlVI) and tetrahedral Al (AlIV) was the special feature noticed in the 27Al MAS NMR of the calcined samples. Thermal calcination around 500 °C resulted in the formation of non-stoichiometric ZnO whose crystallinity decreased in the order ZnAlNO3–CHT>ZnAlCl–CHT>ZnAlSO4–CHT>ZnAlCO3–HT while their extent of solid solubility was found to be the reverse. The crystallinity of the calcined samples was also correlated with surface area and pore-size determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. T. REICHLE, J. Catal. 94 (1985) 547.

    Article  CAS  Google Scholar 

  2. S. VELU and C. S. SWAMY, Appl. Catal 119 (1994) 241, and references therein.

    Article  CAS  Google Scholar 

  3. A. CORMA, S. IBORRA, J. PRIMO and F. REY, ibid. 114 (1994) 214.

    Article  Google Scholar 

  4. M. J. CLIMENT, A. CORMA, S. IBORRA and J. PRIMO, J. Catal. 151 (1995) 60.

    Article  CAS  Google Scholar 

  5. D. TICHIT, M. H. LHOUTY, A. GUIDA, B. H. CHICHE, F. FIGUERAS, A. AUROUX, D. BARTALINI and E. GARRONE, ibid. 151 (1995) 50.

    Article  CAS  Google Scholar 

  6. V. R. L. CONSTANTINO and T. J. PINNAVAIA., Catal. Lett. 23 (1994) 361.

    Article  CAS  Google Scholar 

  7. C. T. FISHEL, and R. J. DAVIS, ibid. 25 (1994) 87.

    Article  CAS  Google Scholar 

  8. J. SHEN, J. M. KOBE, Y. CHEN and J. A. DUMESIC, Langmuir 10 (1994) 3902.

    Article  CAS  Google Scholar 

  9. A. OOKUBO, K. OOI and H. HAYASHI, ibid. 9 (1993) 1418.

    Article  CAS  Google Scholar 

  10. C. MOUSTY, S. THERIAS, C. FORNANO and J. BESSE, J. Electroanal. Chem. 374 (1994) 63.

    Article  CAS  Google Scholar 

  11. J. WANG, Y. TIAN, R. WANG and A. CLEARFIELD, Chem. Mater. 4 (1992) 1276.

    Article  CAS  Google Scholar 

  12. V. R. L. CONSTANTINO and T. J. PINNAVAIA, Inorg. Chem. 34 (1995) 883.

    Article  CAS  Google Scholar 

  13. M. J. HERNANDEZ, M. A. ULIBARRI, J. I. RENDON and C. J. SERNA, Thermochim. Acta 81 (1984) 311.

    Article  CAS  Google Scholar 

  14. S. MIYATA and A. OKADA, Clays Clay Mineral. 25 (1977) 14.

    Article  Google Scholar 

  15. S. KANNAN, S. VELU, V. RAMKUMAR and C. S. SWAMY, J. Mater. Sci. 30 (1995) 1462.

    Article  CAS  Google Scholar 

  16. S. KANNAN and C. S. SWAMY, ibid., in press.

  17. S. MIYATA, Clays Clay Mineral. 23 (1975) 369.

    Article  CAS  Google Scholar 

  18. E. KANEZAKI, K. KINUGAWA and Y. ISHIKAWA, Chem. Phys. Lett. 226 (1994) 325.

    Article  CAS  Google Scholar 

  19. T. SATO, S. ONAI, T. YOSHIOKA and A. OKUWAKI, J. Chem. Tech. Biotechnol 57 (1993) 137.

    Article  CAS  Google Scholar 

  20. M. J. HERNANDEZ-MORENO, M. A. ULIBARRI, J. L. RENDON and C. J. SERNA, Phys. Chem. Mineral. 12 (1985) 34.

    CAS  Google Scholar 

  21. K. J. D. MACKENZIE, R. H. MEINHOLD, B. L. SHERRIFF and ZHIXU, J. Mater. Chem. 3 (1993) 1263.

    Article  CAS  Google Scholar 

  22. F. THEVENOT, R. SZYMANSKI and P. CHAUMETTE, Clays Clay Mineral. 37 (1989) 396.

    Article  CAS  Google Scholar 

  23. S. VELU, DOROTHY SAMUEL and C. S. SWAMY, in “Catalysis: Modern Trends”, edited by N. M. Gupta and D. K. Chakrabarthy (Narosa, New Delhi, India, 1995) p. 470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

VELU, S., RAMKUMAR, V., NARAYANAN, A. et al. Effect of interlayer anions on the physicochemical properties of zinc–aluminium hydrotalcite-like compounds. Journal of Materials Science 32, 957–964 (1997). https://doi.org/10.1023/A:1018561918863

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018561918863

Keywords

Navigation