Skip to main content
Log in

Multiwalled Carbon Nanotubes as Building Blocks in Nanoelectronics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Molecular level components, like carbon multiwalled nanotubes (MWNT), show great potential for future nanoelectronics. At low frequencies, only the outermost carbon layer determines the transport properties of the MWNT. Due to the multiwalled structure and large capacitive interlayer coupling, also the inner layers contribute to the conduction at high frequencies. Consequently, the conduction properties of MWNTs are not very far from those of regular conductors with well-defined electrical characteristics. In our work we have experimentally utilized this fact in constructing various nanoelectronic components out of MWNTs, such as single electron transistors (SET), lumped resistors, and transmission lines. We present results on several nanotube samples, grown both using chemical vapor deposition as well as arc-discharge vaporization. Our results show that SET-electrometers with a noise level as low as 6·10 6 e/\(\sqrt {Hz} \) (at 45 Hz) can be built using arc-discharge-grown carbon nanotubes. Moreover, short nanotubes with small contact areas are found to work at 4.2 K with good gate modulation. Reactive ion etching on CVD tubes is employed to produce nearly Ohmic components with a resistance of 200 kΩ over a 2 μm section. At high frequencies, MWNTs work over micron distances as special LC-transmission lines with high impedance, on the order of 5 kΩ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. Iijima, Nature 354, 56 (1991).

    Google Scholar 

  2. N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992); J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68, 631 (1992).

    Google Scholar 

  3. T. W. Ebbesen and P. M. Ajayan, Nature 358, 220 (1992).

    Google Scholar 

  4. L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J. P. Heremans and C. H. Olk, L. Stockman, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. Lett. 76, 479 (1996).

    Google Scholar 

  5. For a recent review see, e.g., “Special Issue on Nanotubes” in Physics World, June 2000, p. 29.

  6. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. S. Smalley, L. J. Geerlings, and C. Dekker, Nature 386, 474 (1997); S. J. Tans, A.R.M. Verschueren, and C. Dekker, Nature 393, 49 (1998).

    Google Scholar 

  7. M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, Science 275, 1922 (1997).

    Google Scholar 

  8. T.A. Fulton and G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987).

    Google Scholar 

  9. For a pedagogical discussion, see e.g., R. Saito, G. Dresselhaus, and M. S. Dresselhaus Physical Properties of Carbon Nanotubes, (Imperial College Press, London, 1998).

    Google Scholar 

  10. P.R. Wallace, Phys. Rev. 71, 622 (1947).

    Google Scholar 

  11. C. Schönenberger, A. Bachtold, C. Strunk, J.-P. Salvetat, and L. Forro, Applied Physics A 69, 283 (1999); A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forro, T. Nussbaumer, and C. Schönenberger, Nature 397, 673 (1999).

    Google Scholar 

  12. E.B. Sonin, this volume.

  13. R. Tarkiainen, M. Ahlskog, J. Penttilä, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, cond-mat/0104019.

  14. A. Bachtold, M. de Jonge, K. Grove-Rasmussen, P.L. McEuen, M. Buitelaar, and C. Schönenberger, cond-mat/0012262.

  15. R. Egger and A.O. Gogolin, cond-mat/0101246.

  16. V. Ivanov, J. B. Nagy, P. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, and J. Van Landuyt, Chem. Phys. Lett. 223, 329 (1994).

    Google Scholar 

  17. K. Hernadi, A. Fonseca, D. Bernaerts, J. B. Nagy, A. Fudala, and A. A. Lucas, Zeolites 17, 416 (1996).

    Google Scholar 

  18. X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt, V. Ivanov, J. B. Nagy, Ph. Lambin, and A. A. Lucas, Europhys. Lett. 27, 141 (1994).

    Google Scholar 

  19. J.-P. Salvetat, A. J. Kulik, J.-M. Bonard, G. A. D. Briggs, T. Stöckli, K. Méténier, S. Bonnamy, F. Béguin, N. A. Burnham, and L. Forró, Adv. Mater. 11, 161 (1999).

    Google Scholar 

  20. A. Bachtold, M. Henny, C. Terrier, C. Strunk, C. Schönenberger, J.-P. Salvetat, J.-M. Bonard, and L. Forró, Appl. Phys. Lett. 73, 274 (1998).

    Google Scholar 

  21. Jeong-O Lee, C Park, Ju-Jin Kim, Jinhee Kim, Jong Wan Park, and Kyung-Hwa Yoo, J. Phys. D: Appl. Phys. 33, 1953 (2000).

    Google Scholar 

  22. M. Martin, L. Roschier, P. Hakonen, Ü. Parts, M. Paalanen, B. Schleicher, and E. I. Kauppinen, Appl. Phys. Lett. 73, 1505 (1998).

    Google Scholar 

  23. M. R. Falvo, R. M. Taylor, A. Helser, V. Chi, F. P. Brooks Jr, S. Washburn, and R. Superfine, Nature 397, 236 (1999).

    Google Scholar 

  24. See, e.g., C.L. Kane and E.J. Mele, Phys. Rev. Lett. 78, 1932 (1997); A. Rochefort, Ph. Avouris, F. Lesage, and D.R. Salahub, Phys. Rev B 60, 13824 (1999); M. Buongiorno Nardelli and J. Bernholc, Phys. Rev. B 60, R16338 (1999).

    Google Scholar 

  25. H. Postma, M. de Jonge, Z. Yao, and C. Dekker, Phys. Rev. B 62, 10653 (2000).

    Google Scholar 

  26. S. Paulson, M. R. Falvo, N. Snider, A. Helser, T. Hudson, A. Seeger, R. M. Taylor, R. Superfine, and S. Washburn, Appl. Phys. Lett. 75, 2936 (1999).

    Google Scholar 

  27. P.L. McEuen, M. Bockrath, D.H. Cobden, Y.-G. Yoon, and S. Louie, Phys. Rev. Lett. 83, 5098 (1999).

    Google Scholar 

  28. M. Ahlskog, R. Tarkiainen, L. Roschier, and P. Hakonen, Appl. Phys. Lett. 77, 4037 (2000).

    Google Scholar 

  29. See, e.g., E.H. Visscher, S.M. Verbrugh, J. Lindeman, P. Hadley, and J.E. Mooij, Appl. Phys. Lett. 66, 305 (1995).

    Google Scholar 

  30. L. Roschier, J. Penttilä, M. Martin, P. Hakonen, M. Paalanen, U. Tapper, E. Kauppinen, C. Journet, P. Bernier, Appl. Phys. Lett. 75, 728 (1999).

    Google Scholar 

  31. P.G. Collins, M.S. Fuhrer, and A. Zettl, Appl. Phys. Lett. 76, 894 (2000).

    Google Scholar 

  32. L. Roschier, R. Tarkiainen, M. Ahlskog, M. Paalanen, and P. Hakonen, Appl. Phys. Lett., accepted for publication.

  33. V.A. Krupenin, D.E. Presnov, M.N. Savvateev, H. Scherer, A.B. Zorin, and J. Niemeyer, J. Appl. Phys. 84, 3212 (1998); V.A. Krupenin, D.E. Presnov, A.B. Zorin, and J. Niemeyer, J. Low Temp. Phys. 118, 287 (2000).

    Google Scholar 

  34. A.N. Korotkov, D.V. Averin, K.K. Likharev, and S.A. Vasenko, in Single-Electron Tunneling and Mesoscopic Physics, edited by H. Koch and H. Lubbig (Springer, Berlin, 1992), p.45; A. Korotkov, Phys. Rev. B 49, 10381 (1994).

    Google Scholar 

  35. R. Tarkiainen, M. Ahlskog, L. Roschier, and P. Hakonen, to be published.

  36. J.S. Penttilä, Ü. Parts, P.J. Hakonen, M.A. Paalanen, and E.B. Sonin, Phys. Rev. B 61, 10890 (2000).

    Google Scholar 

  37. M.H. Devoret, D. Esteve, H. Grabert, G.-L. Ingold, H. Pothier, and C. Urbina, Phys. Rev. Lett. 64, 1824 (1990).

    Google Scholar 

  38. G.-L. Ingold and Yu.V. Nazarov, in: Single Charge Tunneling, ed. H. Grabert and M.H. Devoret, (Plenum Press, N.Y., 1992), pp. 21-107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahlskog, M., Hakonen, P., Paalanen, M. et al. Multiwalled Carbon Nanotubes as Building Blocks in Nanoelectronics. Journal of Low Temperature Physics 124, 335–352 (2001). https://doi.org/10.1023/A:1017550607311

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017550607311

Keywords

Navigation