Skip to main content
Log in

Mutation and conflicts between artificial and natural selection for quantitative traits

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

There is substantial new variation for quantitative traits generated by mutation that can be utilised by artificial selection. With long-term selection, however, response is often attenuated and a selection limit sometimes reached, even though genetic variation is frequently still present in these lines. In this paper, the theoretical bases of long-term response and variability of populations that come from mutational variance are reviewed, and the relation between them is related to the strength and mode of the natural selection, whether due to pleiotropic effects of mutant genes or stabilising selection. Simple formulae to predict the consequence of relaxed or reversed selection are derived. Results from long-term selection experiments in mice in this laboratory are described and related to the theoretical analyses with the aim of reconciling the evidence for substantial standing variation with the low rate of response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton, N., 1990. Pleiotropic models of quantitative variation. Genetics 124: 773-782.

    PubMed  CAS  Google Scholar 

  • Beniwal, B.K., I.M. Hastings, R. Thompson & W.G. Hill, 1992a. Estimation of changes in genetic parameters in selected lines of mice. 1. Lean mass. Heredity 69: 352-360.

    PubMed  Google Scholar 

  • Beniwal, B.K., I.M. Hastings, R. Thompson & W.G. Hill, 1992b. Estimation of changes in genetic parameters in selected lines of mice. 2. Body weight, body composition and litter size. Heredity 69: 361-371.

    PubMed  Google Scholar 

  • Bulmer, M.G., 1971. The effect of selection on genetic variability. Amer. Nat. 105: 201-211.

    Article  Google Scholar 

  • Bünger, L. & G. Herrendörfer, 1994. Analysis of a longterm selection experiment with an exponentialmodel. J.Anim.Breed.Genet. 111: 1-13.

    Google Scholar 

  • Caballero, A., P.D. Keightley & W.G. Hill, 1995. Accumulation of mutations affecting body weight in inbred mouse lines. Genet. Res. 65: 145-149.

    PubMed  CAS  Google Scholar 

  • Caballero. A., M.A. Toro & C. LópezFanjul, 1991. The response to artificial selection from new mutations in Drosophila melanogaster. Genetics 127: 89-102.

    Google Scholar 

  • Clayton, G.A. & A. Robertson, 1955. Mutation and quantitative variation. Amer. Nat. 89: 151-158.

    Article  Google Scholar 

  • Dickerson, G.E., 1955. Genetic slippage in response to selection for multiple objectives. Cold Spring Harbor Symp. Quant. Biol. 20: 213-224.

    PubMed  CAS  Google Scholar 

  • Dudley, J.W. & J.R. Lambert, 1992. Ninety generations of selection for oil and protein content in maize. Maydica 37: 1-7.

    Google Scholar 

  • Eisen, E.J., 1980. Conclusions from longterm selection experiments with mice. Z. Tierzüchtg. Züchtungsbiol. 97: 305-319.

    Google Scholar 

  • Falconer, D.S., 1960. Introduction to Quantitative Genetics. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics. 4th ed. Longman, Harlow, UK.

    Google Scholar 

  • Fisher, R.A. 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

    Google Scholar 

  • Frankham, R., 1980. Origin of genetic variation in selection lines, pp. 56-68 in Selection experiments in laboratory and domestic animals, edited by A. Robertson. Commonwealth Agricultural Bureaux, Slough, UK.

    Google Scholar 

  • Franklin, I.R., 1980. Evolutionary change in small populations. pp. 135-149 in Conservation biology: An evolutionary perspective, edited byM.E. Soulé and B.A. Wilcox, Sinauer, Sunderland, MA.

    Google Scholar 

  • Hastings, I.M. & R. F. Veerkamp, 1993. The genetic basis of response inmouse lines divergently selected for body weight or fat content. I. The relative contributions of autosomal and sexlinked genes. Genet. Res. 62: 169-175.

    PubMed  CAS  Google Scholar 

  • Hill, W.G., 1982. Predictions of response to artificial selection from new mutations. Genet. Res. 40: 255-278.

    PubMed  Google Scholar 

  • Hill, W.G. & P.D. Keightley, 1988. Interrelations of mutation, population size, artificial and natural selection pp. 57-70 in Proc.2nd Int. Conf. Quant. Genet., edited by B.S. Weir, E.J. Eisen, M.M. Goodman & G. Namkoong. Sinauer, Sunderland, MA.

    Google Scholar 

  • Hill, W.G. & A. Robertson, 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8: 269-294.

    PubMed  CAS  Google Scholar 

  • James, J.W., 1962. Conflict between directional and centripetal selection. Heredity 17: 487-499.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1988. Quantitative genetic variability maintained by mutationstabilizing selection balance in finite populations. Genet. Res. 52: 33-43.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1990. Variation maintained in quantitative traits with mutationselection balance: pleiotropic sideeffects on fitness traits. Proc. Roy. Soc. Lond. B242: 95-100.

    Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1992. Quantitative genetic variation in body size of mice from new mutations. Genetics 131: 693-700.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., T.F.C. Mackay & A. Caballero, 1993. Accounting for bias in estimates of the rate of polygenic mutation. Proc.Roy.Soc.Lond B253: 291-296.

    Google Scholar 

  • Kimura, M., 1969. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61: 893-903.

    PubMed  CAS  Google Scholar 

  • Lande, R., 1975. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26: 221- 235.

    PubMed  CAS  Google Scholar 

  • López, M.A. & LópezFanjul, C., 1993. Spontaneous mutation for a quantitative trait in Drosophila melanogaster. II. Distribution of mutant effects on the trait and fitness. Genet. Res. 61: 117-126.

    PubMed  Google Scholar 

  • Lynch, M. & W.G. Hill, 1986. Phenotypic evolution by neutral mutation. Evolution 40: 915-935.

    Article  Google Scholar 

  • Mackay, T.F.C., 1984. Jumping genes meet abdominal bristles: Hybrid dysgenesisinduced quantitative variation in Drosophila melanogaster. Genet. Res. 44: 231-237.

    Google Scholar 

  • Mackay, T.F.C., J.D. Fry, R.F. Lyman & S.V. Nuzhdin, 1994. Polygenic mutation in Drosophila melanogaster: estimates from response to selection of inbred strains. Genetics 136: 937-951.

    PubMed  CAS  Google Scholar 

  • Mather, K.&L.G. Wigan, 1942. The selection of invisiblemutations. Proc. Roy. Soc. Lond. B131: 50-64.

    Google Scholar 

  • Mbaga, S.H., 1996. Analysis and inferences from longterm quantitative genetic selection experiments. Ph D Thesis, University of Edinburgh.

  • Merchante, M., A. Caballero & C. LöpezFanjul, 1995. Response to selection from new mutation and effective size of partially inbred populations. II. Experiments with Drosophila melanogaster. Genet. Res. 66: 227-240.

    Article  PubMed  CAS  Google Scholar 

  • Nicholas, F.W. & A. Robertson, 1980. The conflict between natural and artificial selection in finite populations. Theor. Appl. Genet. 56: 57-64.

    Article  Google Scholar 

  • Rance, K.A., W.G. Hill & P.D. Keightley, 1997. Mapping quantitative trait loci for body weight on the Xchromosome in mice. I. Analysis of a reciprocal F2 population. Genet. Res. 0: 117-124.

    Article  CAS  Google Scholar 

  • Robertson, A., 1960. A theory of limits in artificial selection. Proc. Roy. Soc. Lond. B153: 234-249.

    Article  Google Scholar 

  • Robertson, A., 1966. A mathematical model of the culling process in dairy cattle. Anim. Prod. 8: 95-108.

    Article  Google Scholar 

  • Robertson, A., 1967. The nature of quantitative genetic variation. pp. 265-280 in Heritage from Mendel, edited by R.A. Brink & R.A. Styles. Univ. Wisconsin Press, Madison, WI.

    Google Scholar 

  • Robertson, F.W., 1955. Selection response and the properties of genetic variation. Cold Spring Harbor Symp. Quant. Biol. 20: 166-177.

    PubMed  CAS  Google Scholar 

  • Sharp, G.L.,W.G. Hill & A. Robertson, 1984. Effects of selection on growth, body composition and food intake in mice. I. Responses in selected traits. Genet. Res., 43: 75-92.

    PubMed  CAS  Google Scholar 

  • Sorensen, D.A. & B.W. Kennedy, 1984. Estimation of genetic variance from selected and unselected populations. J. Anim. Sci. 59: 1213-1223.

    Google Scholar 

  • Turelli, M., 1984. Heritable genetic variation via mutationselection balance: Lerch’s zeta meets the abdominal bristle. Theor. Pop. Biol. 25: 138-193.

    Article  CAS  Google Scholar 

  • Turelli, M. 1985. Effects of pleiotropy on predictions concerning mutationselection balance for polygenic traits. Genetics 111: 165-95.

    PubMed  CAS  Google Scholar 

  • Weber, K.E., 1996. Large genetic change at small fitness cost in large populations of Drosophila melanogaster selected for wind tunnel flight: rethinking fitness surfaces. Genetics 144: 205-213.

    PubMed  CAS  Google Scholar 

  • Wei, M., A. Caballero & W.G. Hill, 1996. Selection response in finite populations. Genetics 144: 1961-1974.

    PubMed  CAS  Google Scholar 

  • Wray, N.R., 1990. Accounting for mutation effects in the additive genetic variancecovariance matrix and its inverse. Biometrics 46: 177-186.

    Article  Google Scholar 

  • Wright, S., 1935. The analysis of variance and the correlations between relatives with respect to deviations from an optimum. J. Genet. 30: 257-266.

    Article  Google Scholar 

  • Zeng, Z.-B. & C. C. Cockerham, 1993. Mutation models and quantitative variation. Genetics 133: 729-736.

    PubMed  CAS  Google Scholar 

  • Zeng, Z.-B. & W G. Hill, 1986. The selection limit due to the conflict between truncation and stabilising selection with mutation. Genetics 114: 1313-1328.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, W.G., Mbaga, S.H. Mutation and conflicts between artificial and natural selection for quantitative traits. Genetica 102, 171–181 (1998). https://doi.org/10.1023/A:1017081614251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017081614251

Navigation