Skip to main content
Log in

Tn5037, a Tn21-like Mercury Resistance transposon from Thiobacillus ferrooxidans

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The 6645-bp mercury resistance transposon of the chemolithotrophic bacterium Thiobacillus ferrooxidanswas cloned and sequenced. This transposon, named Tn5037, belongs to the Tn21branch of the Tn21subgroup, many members of which have been isolated from clinical sources. Having the minimum set of the genes (merRTPA), the mercury resistance operon of Tn5037is organized similarly to most of the Gram-negative bacteria meroperons and is closest to that of ThiobacillusT3.2. The operator-promoter region of the meroperon of Tn5037also has the common (Tn21/Tn501-like) structure. However, its inverted, presumably MerR protein binding repeats in the operator/promoter element are two base pairs shorter than in Tn21/Tn501. In the merA region, this transposon shares 77.4, 79.1, 83.2 and 87.8% identical bases with Tn21, Tn501, T. ferrooxidansE-15, and ThiobacillusT3.2, respectively. No inducibility of the Tn5037 meroperon was detected in the in vivo experiments. The transposition system (terminal repeats plus gene tnpA) of Tn5037was inactive in Escherichia coliK12, in contrast to its resolution system (ressite plus gene tnpR). However, transposition of Tn5037in this host was provided by the tnpAgene of Tn5036, a member of the Tn21subgroup. Sequence analysis of the Tn5037 ressite suggested its recombinant nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rawlings, D.E. and Kusano, T., Molecular Genetics of Thiobacillus ferrooxidans, Microbiol. Rev., 1994, vol. 58, pp.39-55.

    Google Scholar 

  2. Harahuc, L., Lizama, H.M., and Suzuki, I., Effect of Anions on Selective Solubilization of Zinc and Copper in Bacterial Leaching of Sulfide Ores, Biotechnol.Bioeng., 2000, vol. 69, pp.196-203.

    Google Scholar 

  3. Baldi, F. and Olson, G.J., Effects of Cinnabar on Pyrite Oxidation by Thiobacillus ferrooxidans and Cinnabar Mobilization by a Mercury-Resistant Strain, Appl. Environ.Microbiol., 1987, vol. 53, pp.772-776.

    Google Scholar 

  4. Hobman, J.L. and Brown, N.L., Bacterial Mercury Resistance Genes, Metal Ions in Biological Systems, Sigel, H. and Sigel, A., Eds., New York: Marcel Dekker, 1997, vol. 34, pp.527-567.

    Google Scholar 

  5. Liebert, C.A., Hall, R.M., and Summers, A.O., Transposon Tn21, Flagship of the Floating Genome, Microbiol.Mol. Biol. Rev., 1999, vol. 63, pp.507-522.

    Google Scholar 

  6. Kholodii, G., Yurieva, O., Mindlin, S., et al., Tn5044, a Novel Tn3 Family Transposon Coding for Temperature-Sensitive Mercury Resistance, Res. Microbiol., 2000, vol. 151, pp.291-312.

    Google Scholar 

  7. Inoue, C., Sugawara, K., and Kusano, T., Thiobacillus ferrooxidans mer Operon: Sequence Analysis of the Promoter and Adjacent Genes, Gene, 1990, vol. 96, pp.115-120.

    Google Scholar 

  8. Inoue, C., Sugawara, K., and Kusano, T., The merR Regulatory Gene in Thiobacillus ferrooxidans Is Spaced Apart from the mer Structural Genes, Mol. Microbiol., 1991, vol. 5, pp. 2707-2718.

    Google Scholar 

  9. Velasco, A., Acebo, P., Flores, N., and Perera, J., The mer Operon of the Acidophilic Bacterium Thiobacillus T3.2 Diverges from Its Thiobacillus ferrooxidans Counterpart, Extremophiles, 1999, vol. 3, pp.35-43.

    Google Scholar 

  10. Reniero, D., Mozzon, E., Galli, E., and Barbieri, P., Two Aberrant Mercury Resistance Transposons in the Pseudomonas stutzeri Plasmid pPB, Gene, 1998, vol. 208, pp.37-42.

    Google Scholar 

  11. Liebert, C.A., Wireman, J., Smith, T., and Summers, A.O., Phylogeny of Mercury Resistance (mer) Operons of Gram-Negative Bacteria Isolated from the Fecal Flora of Primates, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1066-1076.

    Google Scholar 

  12. Liebert, C.A., Watson, A.L., and Summers, A.O., The Quality of merC, a Module of the mer Mosaic, J. Mol.Evol., 2000, vol. 51, pp.607-622.

    Google Scholar 

  13. Silverman, M. and Lundgren, D., Studies on the Chemoautotrophic Iron Bacterium Ferrobacillus ferrooxidans, J. Bacteriol., 1959, vol. 77, pp.642-647.

    Google Scholar 

  14. Eckhardt, T., A Rapid Method for Identification of Plasmid Deoxyribonucleic Acid in Bacteria, Plasmid, 1978, vol. 1, pp.584-588.

  15. Lomovskaya, O.L., Mindlin, S.Z., Gorlenko, Zh.M., and Khesin, R.B., A Nonconjugative Mobilizable Broad Host Range Plasmid of Acinetobacter sp. That Determines HgCl2 Resistance, Mol. Gen. Genet., 1986, vol. 202, pp.286-290.

    Google Scholar 

  16. Molecular Cloning: A Laboratory Manual, Sambrook, J., Fritsch, E.F., and Maniatis, T., Eds., Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  17. Kholodii, G.Ya., Mindlin, S.Z., Bass, I.A., et al., Four Genes, Two Ends, and a res Region Are Involved in Transposition of Tn5053: A Paradigm for a Novel Family of Transposons Carrying Either a mer Operon or an Integron, Mol. Microbiol., 1995, vol. 17, pp. 1189-1200.

    Google Scholar 

  18. Nakatsu, C., Ng, J., Singh, R., et al., Chlorobenzoate Catabolic Transposon Tn5271 Is a Composite Class I Element with Flanking Class II Insertion Sequences, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 8312-8316.

    Google Scholar 

  19. Kholodii, G.Ya., Yurieva, O.V., Gorlenko, Zh.M., et al., Tn5041: A Chimeric Mercury Resistance Transposon Closely Related to a Toluene Degradative Transposon Tn4651, Microbiology, 1997, vol. 143, pp. 2549-2556.

    Google Scholar 

  20. Grinsted, J., De La Cruz, F., and Schmitt, R., The Tn21 Subgroup of Bacterial Transposable Elements, Plasmid, 1990, vol. 24, pp.163-189.

    Google Scholar 

  21. Grinsted, J. and Brown, N.L.A., Tn21 Terminal Sequence within Tn501: Complementation of tnpA Gene Function and Transposon Evolution, Mol. Gen. Genet., 1984, vol. 197, pp.497-502.

    Google Scholar 

  22. Yurieva, O., Kholodii, G., Minakhin, L., et al., Intercontinental Spread of Promiscuous Mercury Resistance Transposons in Environmental Bacteria, Mol. Microbiol., 1997, vol. 24, pp.321-329.

    Google Scholar 

  23. Danilevich, V.N., Stepashin, Yu.G., Volozhantsev, N.N., and Volkovoi, K.I., Isolation and Characterization of Deletion Mutants of Temperature-Sensitive Plasmid pEG1, Genetika (Moscow), 1980, vol. 16, pp. 1958-1966.

    Google Scholar 

  24. Vieira, J. and Messing, J., The pUC Plasmids, an M13mp7-Derived System for Insertion Mutagenesis and Sequencing with Synthetic Universal Primers, Gene, 1982, vol. 19, pp.259-268.

    Google Scholar 

  25. Kholodii, G.Ya., Mindlin, S.Z., Gorlenko, Zh.M., et al., Molecular Genetic Analysis of the Tn5041 Transposition System, Genetika (Moscow), 2000, vol. 36, no. 4, pp.459-469.

    Google Scholar 

  26. Clennel A.M., Johnston B., and Rawlings D.E., Structure and Function of Tn5467, a Tn21-like Transposon Located on the Thiobacillus ferrooxidans Broad-hostrange Plasmid pTF-FC2, Appl. Environ. Microbiol., 1995, vol. 61, pp. 4223-4229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyaeva, E.S., Kholodii, G.Y., Bass, I.A. et al. Tn5037, a Tn21-like Mercury Resistance transposon from Thiobacillus ferrooxidans. Russian Journal of Genetics 37, 972–975 (2001). https://doi.org/10.1023/A:1016746204241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016746204241

Keywords

Navigation