Skip to main content
Log in

On the Role of Variable Latent Periods in Mathematical Models for Tuberculosis

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The qualitative behaviors of a system of ordinary differential equations and a system of differential-integral equations, which model the dynamics of disease transmission for tuberculosis (TB), have been studied. It has been shown that the dynamics of both models are governed by a reproductive number. All solutions converge to the origin (the disease-free equilibrium) when this reproductive number is less than or equal to the critical value one. The disease-free equilibrium is unstable and there exists a unique positive (endemic) equilibrium if the reproductive number exceeds one. Moreover, the positive equilibrium is stable. Our results show that the qualitative behaviors predicted by the model with arbitrarily distributed latent stage are similar to those given by the TB model with an exponentially distributed period of latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Anderson, R. M. (1982). Population Dynamics of Infections Diseases, Chapman and Hall, London-New York.

    Google Scholar 

  • Anderson, R. M., and May, R. M. (1982). Population Biology of Infections Diseases, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Anderson, R. M., and May, R. M. (1991). Infectious Diseases of Humans, Oxford University Press, Oxford-New York-Tokyo.

    Google Scholar 

  • Blower, S. M., McLean, A. R., Porco, T. C., Small, P. M., Hopwell, P. C., Sanchez, M. A, and Moss, A. R. (1995). The intrinsic transmission dynamics of tuberculosis epidemics. Nature Med. 1, 815-821.

    Google Scholar 

  • Castillo-Chavez, C., and Feng, Z. (1997a). To treat or not to treat: The case of tuberculosis. J. Math. Biol. 35, 629-659.

    Google Scholar 

  • Castillo-Chavez, C., and Feng, Z. (1997b). Mathematical models for the disease dynamics of tuberculosis. In Arino, O., Axelrod, D., and Kimmel, M. (eds.), Advances in Mathematical Population Dynamics-Molecules, Cells and Man, World Scientific, Singapore, pp. 629-656.

    Google Scholar 

  • Castillo-Chavez, C., and Feng, Z. (1998). global stability of an age-structure model for TB and its applications to optimal vaccination strategies. Math. Biosci . 151, 135-154.

    Google Scholar 

  • Castillo-Chavez, C., Hethcote, H. W., Andreason, V., Levin, S. A., and Liu, W. (1988). Cross-immunity in the dynamics of homogeneous and heterogeneous populations. In Gross, L., Hallam, T. G., and Levin, S. A. (eds.), Mathematical Biology, Proceedings, Autumn Course Research Seminars, Trieste, 1986, World Scientific, Singapore, pp. 303-316.

    Google Scholar 

  • Castillo-Chavez, C., Cooke, K., Huang, W., and Levin, S. A. (1989). Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus. Appl. Math. Lett. 2, 327-331.

    Google Scholar 

  • Castillo-Chavez, C., Feng, Z., and Capurro, A. F. (2000). A model for TB with exogenous reinfection. Theor. Popul. Biol. 57, 235-247.

    Google Scholar 

  • Comstook, G. W., and Edwards, P. Q. (1975). The competing risks of tuberculosis and hepatitis for adult tuberculin reactors. Am. Rev. Respir. Dis. 87 (Suppl.), 1-88.

    Google Scholar 

  • Comstook, G. W., Livesay, V. T., and Woolpert, S. F. (1974). The prognosis of a positive tuberculin reaction in childhood and adolescence. Am. J. Epidemiol. 99, 131-138.

    Google Scholar 

  • Dietz, K. (1979). Epidemiologic interference of virus populations. J. Math. Biol., 8, 291-300.

    Google Scholar 

  • Dietz, K., and Schenzle, D. (1985). Proportionate mixing models for age-dependent infection transmission. J. Math. Biol. 22, 117-120.

    Google Scholar 

  • Feng, Z. (1994). A Mathematical Model for the Dynamics of Childhood Disease Under the Impact of Isolation, Thesis, Arizona State University, Tempe.

    Google Scholar 

  • Feng, Z., and Thieme, R. H. (1985). Multi-annual outbreaks of childhood disease revisited: The impact of isolation. Math. Biosci. 128, 93-130.

    Google Scholar 

  • Hadeler, K. P., and Castillo-Chavez, C. (1995). A core group model for disease transmission. Math. Biosci. 128, 41-55.

    Google Scholar 

  • Hethcote, H. W. (1976). Qualitative analysis for communicable disease models. Math. Biosci. 28, 335-356.

    Google Scholar 

  • Hethcote, H. W., and Van Ark, J. W. (1987). Epidemiological models for heterogeneous populations: Proportionate mixing, parameter estimation, and immunization programs. Math. Biosci. 84, 85-118.

    Google Scholar 

  • Hethcote, H W., Stech, H. W., and van den Driessche, P. (1981). Periodicity and stability in epidemic models: A survey. In Busenberg, S., and Cooke, K. L. (eds.), Differential Equations and Applications in Ecology, Epidemics, and Population Problems, Academic Press, New York, pp. 65-82.

    Google Scholar 

  • Hopewell, P. C. (1994). Overview of clinical tuberculosis. In Bloom, B. R. (ed.), Tuberculosis: Pathogenesis, Protection, and Control, AMS, Washington, DC, pp. 25-46.

    Google Scholar 

  • Li, M. Y, and Muldowney, J. S. (1995). Global stability for the SEIR model in epidemiology. Math. Biosci. 125, 155-164.

    Google Scholar 

  • Medical Research Council (1972). BCG and vole bacillus in the prevention of tuberculosis in adolescence and early adult life. Bull. WHO, 46, 3785.

    Google Scholar 

  • Miller, B. (1993). Preventive therapy for tuberculosis. Med. Clin. North Amer. 77, 1263-1275.

    Google Scholar 

  • Miller, R. K. (1968). On the linearization of Volterra integral equations. J. Math. Anal. Appl. 23, 198-208.

    Google Scholar 

  • Miller, R. K. (1971). Nonlinear Volterra Integral Equations, W. A. Benjamin, New York.

    Google Scholar 

  • Muldowney, J. S. (1990). Compound matrix and ordinary differential equations. Rocky Mont. J. Math. 20, 857-872.

    Google Scholar 

  • Schenzle, D. (1984). An age-structured model of pre-and post-vaccination measles transmission. IMA J. Math. Appl. Med. Biol. 1, 169-191.

    Google Scholar 

  • Smith, H. L. (1995). Monotone dynamical systems: An introduction to theory of competitive and cooperative systems. AMS Mathematical Surveys and Monographs 41.

  • Smith, P. G., and Moss, A. R. (1994). Epidemiology of tuberculosis. In Bloom, B. R. (ed.), Tuberculosis: Pathogenesis, Protection, and Control, AMS, Washington, DC, pp. 47-59.

    Google Scholar 

  • Stech, H. W., and Williams, M. (1981). Stability in a class of cyclic epidemic models with delay. J. Math. Biol. 11, 95-103.

    Google Scholar 

  • Thieme, R. H. (1993). Persistence under relaxed point-dissipativity (with applications to an endemic model). SIAM J. Math. Anal. 24, 407-435.

    Google Scholar 

  • Thieme, R. H., and van den Driessche, P. (1999) Global stability in cyclic epidemic models with disease fatalities. Differential Equations with Application to Biology, Fields Institute Communications, AMS, Vol. 21, pp. 459-472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Z., Huang, W. & Castillo-Chavez, C. On the Role of Variable Latent Periods in Mathematical Models for Tuberculosis. Journal of Dynamics and Differential Equations 13, 425–452 (2001). https://doi.org/10.1023/A:1016688209771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016688209771

Navigation