Skip to main content
Log in

Genetic Immunization Using Nanoparticles Engineered from Microemulsion Precursors

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Genetic immunization using “naked” plasmid DNA (pDNA) has been shown to elicit broad humoral and cellular immune responses. However, more versatile and perhaps cell-targeted delivery systems are needed. To this end, a novel process to engineer cationic nanoparticles coated with pDNA for genetic immunization was explored.

Methods. Cationic nanoparticles were engineered from warm oil-in-water microemulsion precursors composed of emulsifying wax as the oil phase and cetyltrimethylammonium bromide (CTAB) as the cationic surfactant. Plasmid DNA was coated on the surface of the cationic nanoparticles to produce pDNA-coated nanoparticles. An endosomolytic lipid and/or a dendritic cell-targeting ligand (mannan) were incorporated in or deposited on the nanoparticles to enhance the in vitro cell transfection efficiency and the in vivo immune responses after subcutaneous injection to Balb/C mice. The IgG titer to expressed β-galactosidase and the cytokine release from isolated splenocytes after stimulation were determined on 28 days.

Results. Cationic nanoparticles (around 100 nm) were engineered within minutes. The pDNA-coated nanoparticles were stable at 37°C over 30 min in selected biologic fluids. Transmission electron microscopy showed the nanoparticles were spherical. Plasmid DNA-coated nanoparticles, especially those with both an endosomolytic lipid and dendritic cell-targeting ligand, resulted in significant enhancement in both IgG titer (over 16-fold) and T-helper type-1 (Th1-type) cytokine release (up to 300% increase) over “naked” pDNA.

Conclusion. A novel method to engineer pDNA-coated nanoparticles for enhanced in vitro cell transfection and enhanced in vivo immune responses was reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. B. Ulmer, J. Donnelly, S. E. Parker, G. H. Rhodes, P. L. Felgner, G. H. Rhodes, P. L. Felgner, V. J. Dwarki, S. H. Gromkowski, R. R. Deck, C. M. DeWitt, A. Friedman, L. A. Hawe, K. R. Leander; D. Martinez, H. C. Perry; J. W. Shiver, D. L. Montgomery, and M. A. Liu. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–1749 (1993).

    Google Scholar 

  2. D. Tang, M. DeVit, and S. A. Johnston. Genetic immunization is a simple method for eliciting an immune response. Nature 356: 152–154 (1992).

    Google Scholar 

  3. M. A. Liu, M. R. Hilleman, and R. Kurth (eds.), DNA Vaccines: A New Era in Vaccinology, Vol. 772, Ann. NY Acad Sci., New York, 1995.

    Google Scholar 

  4. J. B. Ulmer, J. C. Sadoff, and M. A. Liu. DNA vaccines. Curr. Opin. Immunol. 8:531–536 (1996).

    Google Scholar 

  5. M. A. Liu. The immunologist's grail: Vaccines that generate cellular immunity. Proc. Natl. Acad. Sci. USA 94:10496–10498 (1997).

    Google Scholar 

  6. M. A. Barry and S. A. Johnston. Biologic features of genetic immunization. Vaccine 15:788–791 (1997).

    Google Scholar 

  7. H. L. Robinson and C. T. Torres. DNA vaccines. Semin. Immunol. 9:271–283 (1997).

    Google Scholar 

  8. M. J. Roy, M. S. Wu, L. J. Fuller, L. G. Tussey, S. Speller, J. Culp, J. K. Burkholder, W. F. Swain, R. M. Dixon, G. Widera, R. Vessey, A. King, G. Ogg, A. Gallimore, J. R. Haynes, and D. Heydenburg Fuller.Induction of antigen-specific CD8+ cells, T helper cells, and protective levels of antibodies in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19:764–778 (2000).

    Google Scholar 

  9. M. A. Conway, L. Madrigal-Estebas, S. McClean, D. J. Brayden, and K. H. Mills. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19:1940–1950 (2001).

    Google Scholar 

  10. M. G. Cusi, R. Zurbriggen, M. Valassina, S. Bianchi, P. Durrer, P. E. Valensin, M. Donati, and R. Gluck. Intranasal immunization with mumps virus DNA vaccine delivered by influenza virosomes elicits mucosal and systemic immunity. Virology 277:111–118 (2000).

    Google Scholar 

  11. M. L. Hedley, J. Curley, and R. Urban. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Med. 4:365–368 (1998).

    Google Scholar 

  12. M. Singh, M. Briones, G. Ott, and D. O'Hagan. Cationic microparticles: A potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. USA 97:811–816 (2000).

    Google Scholar 

  13. K. D. Newman, D. L. Sosnowski, G. S. Kwon, and J. Samuel. Delivery of MUC1 mucin peptide by Poly(d,l-lactic-co-glycolic acid) microspheres induces type 1 T helper immune responses. J. Pharm. Sci. 87:1421–1427 (1998).

    Google Scholar 

  14. Z. Cui and R. J. Mumper. Chitosan-based nanoparticles for topical genetic immunization. J. Control. Release 75:409–419 (2001).

    Google Scholar 

  15. Z. Cui and R. J. Mumper. Topical Immunization using nanoengineered Genetic Vaccines. J. Contol. Release 81:173–184 (2002).

    Google Scholar 

  16. F. C. MacLaughlin, R. Mumper, J. Wang, J. Tagliaferri, I. Gill, M. Hinchcliffe, and A. P. Rolland. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J. Control. Release 56:259–272 (1998).

    Google Scholar 

  17. Y. Kaneo, T. Tanaka, T. Nakano, and Y. Tamaguchi. Evidence for receptor-mediated hepatic uptake of pullulan in rats. J. Control. Release 70:365–373 (2001).

    Google Scholar 

  18. X. G. Gu, M. Schmitt, A. Hiasa, Y. Nagata, H. Ikeda, Y. Sasaki, K. Akiyoshi, J. Sunamoto, H. Nakamura, K. Kuribayashi, and H. Shiku. A novel hydrophobized polysaccharide/oncoprotein complex vaccine induces in vitro and in vivo cellular and humoral immune responses against HER2-expressing murine sarcomas. Cancer Res. 58:3385–3390 (1998).

    Google Scholar 

  19. N. Venkatesan and S. P. Vyas. Polysaccharide coated liposomes for oral immunization-development and characterization. Int. J. Pharm. 10:169–177 (2000).

    Google Scholar 

  20. L. Wang, H. Ikeda, Y. Ikuta, M. Schmitt, Y. Miyahara, Y. Takahashi, X. Gu, Y. Nagata, Y. Sasaki, K. Akiyoshi, J. Sunamoto, H. Nakamura, K. Kuribayashi, and H. Shiku. Bone marrow-derived dendritic cells incorporate and process hydrophobized polysaccharide/oncoprotein complex as antigen presenting cells. Int. J. Oncol. 14:695–701 (1999).

    Google Scholar 

  21. C. Reis e Sousa, P. D. Stahl, and J. M. Austyn. Phagocytosis of antigens by Langerhans cells in vitro. J. Exp. Med. 178:509–519 (1993).

    Google Scholar 

  22. J. M. Austyn. New insights into the mobilization and phagocytic activity of dendritic cells. J. Exp. Med. 183:1287–1292 (1996).

    Google Scholar 

  23. H. Farhood, N. Serbina, and L. Huang. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta 1235:289–295 (1995).

    Google Scholar 

  24. L. Huang, H. Farhood, N. Serbina, A. G. Teepe, and J. Barsoum. Endosomolytic activity of cationic liposomes enhances the delivery of human immunodeficiency virus-1 trans-activator protein (TAT) to mammalian cells. Biochem. Biophys. Res. Commun. 217:761–768 (1995).

    Google Scholar 

  25. R. Jordens, A. Thompson, R. Amons, and F. Koning. Human dendritic cells shed a functional, soluble form of the mannose receptor. Int. Immunol. 11:1775–1780 (1999).

    Google Scholar 

  26. A. J. Engering, M. Cella, D. Fluitsma, M. Brockhaus, E. M. Hoefsmit, A. Lanzavecchia, and J. Pieters. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells.Eur. J. Immunol. 27:2417–2425 (1997).

    Google Scholar 

  27. M. C. Tan, A. M. Mommas, J. W. Drijfhout, R. Jordens, J. J. Onderwater, D. Verwoerd, A. A. Mulder, A. N. van der Heiden, D. Scheidegger, L. C. Oomen, T. H. Ottenhoff, A. Tulp, J. J. Neefjes JJ, and F. Koning. Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur. J. Immunol. 27:2426–2435 (1997).

    Google Scholar 

  28. S. Toda, N. Ishii, E. Okuda, K. I. Kusakabe, H. Arai, K. Hamajima, I. Gorai, K. Nishioka, and K. Okuda. HIV-1-specific cell-mediated immune responses induced by DNA vaccination were enhanced by mannan-coated liposomes and inhibited by anti-interferon-? antibody. Immunology 92:111–117 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell J. Mumper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Z., Mumper, R.J. Genetic Immunization Using Nanoparticles Engineered from Microemulsion Precursors. Pharm Res 19, 939–946 (2002). https://doi.org/10.1023/A:1016402019380

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016402019380

Navigation