Skip to main content
Log in

Molecular Factors Influencing Retention on Immobilized Artificial Membranes (IAM) Compared to Partitioning in Liposomes and n-Octanol

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To assess the effect of molecular factors influencing retention on immobilized artificial membrane (IAM) high-performance liquid chromatography columns compared to liposomal partitioning and traditional n-octanol/water partition coefficients.

Methods. IAM capacity factors were measured at pH 7.0 on an IAM.PC.DD2 stationary phase. Liposomal partitioning at pH 7.0 and n-octanol/water partition coefficients were measured using the pH metric method. Partitioning in egg-phosphatidylcholine (PhC) liposomes was also measured by equilibrium dialysis for a series of β-blockers.

Results. For the ionized β-blockers, potentiometry and equilibrium dialysis yielded consistent partitioning data. For relatively large bases, IAM retention correlated well with PhC liposome partitioning, hydrophobic forces being mainly involved. For more hydrophilic compounds and for heterogeneous solutes, in contrast, the balance between electrostatic and hydrophobic interactions was not the same in the two systems. Hydrogen bonding, an important factor in liposomes partitioning, played only a minor role in IAM retention.

Conclusions. Partitioning in immobilized artificial membranes depends on size, hydrophobicity, and charge. When hydrophobic interactions dominate retention, IAM capacity factors are well correlated with liposomal partitioning. On the contary, for hydrophilic solutes, the two systems do not yield the same information and are not interchangeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. M. Pauletti and H. Wunderli-Allenspach. Partition coefficients in vitro: artificial membranes as a standardized distribution model. Eur. J. Pharm. Sci. 1:273–282 (1994).

    Google Scholar 

  2. G. V. Betageri and J. A. Rogers. The liposome as a distribution model in QSAR studies. Int. J. Pharm. 46:95–102 (1988).

    Google Scholar 

  3. C. Pidgeon, S. Ong, H. Liu, X. Qiu, M. Pidgeon, M. Dantzig, A. H. Dantzig, J. Munroe, W. J. Hornback, J. S. Kasher, L. Glunz, and T. Szczerba. IAM chromatography: an in vitro screen for predicting drug membrane permeability. J. Med. Chem. 38:590–594 (1995).

    Google Scholar 

  4. S. Ong, H. Liu, X. Qiu, G. Bhat, and C. Pidgeon. Membrane partition coefficients chromatographically measured using immobilized artificial membrane surfaces. Anal. Chem. 67:755–762 (1995).

    Google Scholar 

  5. B. Testa, H. Van de Waterbeemd, G. Folkers, and R. H. Guy (eds), Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical and Computational Strategies, Wiley-VHCA, Zurich, 2001.

    Google Scholar 

  6. K. Balon, B. U. Riebesehl, and B. W. Müller. Determination of liposome partitioning of ionizable drugs by titration. J. Pharm. Sci. 88:802–806 (1999).

    Google Scholar 

  7. A. Avdeef, K. J. Box, J. E. A. Comer, C. Hibbert, and K. Y. Tam. pH-metric log P. 10. Determination of vesicle membrane-water partition coefficients of ionizable drugs. Pharm. Res. 15:209–215 (1998).

    Google Scholar 

  8. A. Avdeef, D. L. Kearney, J. A. Brown, and A. R. Chemotti, Jr. Bjerrum plots for the determination of systematic concentration errors in titration data. Anal. Chem. 54:2322–2326 (1982).

    Google Scholar 

  9. C. Ottiger and H. Wunderli-Allenspach. Immobilized artificial membrane (IAM)-HPLC for partition studies of neutral and ionized acids and bases in comparison with the liposomal partition system. Pharm. Res. 16:643–650 (1999).

    Google Scholar 

  10. R. P. Austin, A. M. Davis, and C. N. Manners. Partitioning of ionizing molecules between aqueous buffers and phospholipid vesicles. J. Pharm. Sci. 84:1180–1183 (1995).

    Google Scholar 

  11. R. P. Mason, D. G. Rhodes, and L. G. Herbette. Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biologic membranes. J. Med. Chem. 34:869–877 (1991).

    Google Scholar 

  12. G. W. Caldwell, J. A. Massucci, M. Evangelisto, and R. White. Evaluation of the immobilized artificial membrane phosphatidylcholine. Drug discovery column for high-performance liquid chromatographic screening of drug-membrane interactions. J. Chromatogr. A 800:161–169 (1998).

    Google Scholar 

  13. C. Pidgeon, S. Ong, H. Choi, and H. Liu. Preparation of mixed ligand immobilized artificial membranes for predicting drug binding to membranes. Anal. Chem. 66:2701–2709 (1994).

    Google Scholar 

  14. W. R. Meindl, E. von Angerer, H. Schönenberger, and G. Ruckdeschel. Benzylamines: synthesis and evaluation of antimycobacterial properties. J. Med. Chem. 27:1111–1118 (1984).

    Google Scholar 

  15. J. v. Braun and A. Friedsam, Haftfestigkeit organischer Reste (VII. Mitteil.). Chem. Ber. 639:2407–2412 (1930).

    Google Scholar 

  16. A. Avdeef. pH-Metric log P. Part 1. Difference plots for determining ion-pair octanol-water partition coefficients of multiprotic substances. Quant. Struct.-Act. Relat. 11:510–517 (1992).

    Google Scholar 

  17. G. Caron, P. Gaillard, P. A. Carrupt, and B. Testa. Lipophilicity behavior of model and medicinal compounds containing a sulfide, sulfoxide, or sulfone moiety. Helv. Chim. Acta 80:449–462 (1997).

    Google Scholar 

  18. M. J. Hope, M. B. Bally, G. Webb, and P. R. Cullis. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta 812: 55–65 (1985).

    Google Scholar 

  19. L. D. Mayer, M. J. Hope, and P. R. Cullis. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta 858:161–168 (1986).

    Google Scholar 

  20. M. Takayama, S. Itoh, T. Nagasaki, and I. Tanimizu. A new enzymatic method for determination of serum choline-containing phospholipids. Clin. Chim. Acta 79:93–98 (1977).

    Google Scholar 

  21. In R. R. C. New (ed.), Liposomes. A Practical Approach, IRL Press, Oxford, 1990.

    Google Scholar 

  22. S. D. Krämer, C. Jakits-Deiser, and H. Wunderli-Allenspach. Free fatty acids cause pH-dependent changes in drug-lipid membrane interactions around physiological pH. Pharm. Res. 14:827–832 (1997).

    Google Scholar 

  23. R. Fruttero, G. Caron, E. Fornatto, D. Boschi, G. Ermondi, A. Gasco, P. A. Carrupt, and B. Testa. Mechanisms of liposomes/water partitioning of (p-methylbenzyl)alkylamines. Pharm. Res. 15:1407–1413 (1998).

    Google Scholar 

  24. G. Caron, G. Steyaert, A. Pagliara, P. Crivori, P. Gaillard, P. A. Carrupt, A. Avdeef, K. J. Box, H. H. Girault, and B. Testa. Structure-lipophilicity relationships of the neutral and cationic forms of ?-blockers. Part I. Partitioning in isotropic systems. Helv. Chim. Acta 82:1211–1222 (1999).

    Google Scholar 

  25. F. Reymond, G. Steyaert, P. A. Carrupt, B. Testa, and H. H. Girault. Ionic partition diagrams: a potentiel-pH representation. J. Am. Chem. Soc. 118:11951–11957 (1996).

    Google Scholar 

  26. S. Ong, H. Liu, and C. Pidgeon. Immobilized-artificial-membrane chromatography: measurements of membrane partition coefficient and predicting drug membrane permeability. J. Chromatogr. A 728:113–128 (1996).

    Google Scholar 

  27. R. P. Rand and V. A. Parsegian. Hydration forces between phospholipid bilayers. Biochem. Biophys. Acta 988:351–376 (1989).

    Google Scholar 

  28. T. Osterberg, M. Svensson, and P. Lundahl. Chromatographic retention of drug molecules on immobilised liposomes prepared from egg phopsholipids molecules and from chemically pure phospholipids. Eur. J. Pharm. Sci. 12:427–439 (2001).

    Google Scholar 

  29. R. Kaliszan, A. Nasal, and A. Bucinski. Chromatographic hydrophobicity parameter determined on an immobilized artificial membrane column: relationships to standard measures of hydrophobicity and bioactivity. Eur. J. Med. Chem. 29:163–170 (1994).

    Google Scholar 

  30. S. Demare, D. Roy, and J. Y. Legendre. Factors governing the retention of solutes on chromatographic immobilized artifical membranes: application to anti-inflammatory and analgesic drugs. J. Liquid Chromatogr. 22:2675–2688 ((1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Testa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taillardat-Bertschinger, A., Martinet, C.A.M., Carrupt, PA. et al. Molecular Factors Influencing Retention on Immobilized Artificial Membranes (IAM) Compared to Partitioning in Liposomes and n-Octanol. Pharm Res 19, 729–737 (2002). https://doi.org/10.1023/A:1016156927420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016156927420

Navigation