Skip to main content
Log in

Sulfated Zirconia with Ordered Mesopores as an Active Catalyst for n-Butane Isomerization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Zirconia/surfactant composites were hydrothermally synthesized in aqueous sulfuric acid at 373 K using Zr(O-nPr)4 as oxide precursor and hexadecyl-trimethyl-ammonium bromide as template. Mesostructural features similar to those of MCM-41 were detected by X-ray diffractometry, with d=4.6 nm. A sample obtained from a starting mixture with Zr:S:CTAB = 2:2:1 was stable enough for removal of occluded organics. After calcination at 813 K, the d-value was 3.6 nm, the surface area 200 m2/g, and the mean pore diameter estimated by the BJH method 2.2 nm. Extended X-ray absorption fine structure analysis suggests Zr to be in a short-range structure (<4 Å) similar to that of Zr in monoclinic ZrO2. Scanning electron microscopy including energy dispersive X-ray analysis showed 1-5 μm sulfur-containing ZrO2 spheres. The material catalyzes the isomerization of n-butane to i-butane at 378 K with a steady activity in the order of magnitude of commercial sulfated ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth and J.C. Vartuli, Nature 359 (1992) 710.

    Google Scholar 

  2. A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Mongolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B.F. Chmelka, Science 261 (1993) 1299.

    Google Scholar 

  3. D.M. Antonelli and J.Y. Ying, Angew. Chem. 107 (1995) 2202; Angew. Chem. Int. Ed. Eng. 34 (1995) 2014.

    Google Scholar 

  4. Q. Huo, D. Magoless, T.E. Gier, P. Siege, R. Leon, P. Petroff, F. Schüth and G.D. Stucky, Nature 368 (1994) 317.

    Google Scholar 

  5. G. Wirnsberger, K. Gatterer, H.P. Fritzer, W. Grogger, B. Pillep, P. Behrens, M.F. Hansen and C. Bender Koch, Chem. Mater. 13 (2000) 1453.

    Google Scholar 

  6. T. Kimure, Y. Sugahara and K. Kuroda, Chem. Lett. (1997) 983.

  7. K. Tanabe, Mater. Chem. Phys. 13 (1985) 347.

    Google Scholar 

  8. J.S. Reddy and A. Sayari, Catal. Lett. 38 (1996) 219.

    Google Scholar 

  9. U. Ciesla, S. Schacht, G.D. Stucky, K.K. Unger and F. Schüth, Angew. Chem. 108 (1996) 597; Angew. Chem. Int. Ed. Eng. 35 (1996) 541.

    Google Scholar 

  10. V.N. Romannikov, V.B. Fenelonov, E.A. Paukshtis, A.Yu. Derevyankin and V.I. Zaikovskii, Microporous Mesoporous Materials 21 (1998) 411.

    Google Scholar 

  11. U. Ciesla, M. Fröba, G. Stucky and F. Schüth, Chem. Mater. 11 (1999) 227.

    Google Scholar 

  12. F. Schüth, U. Ciesla, S. Schacht, M. Tieme, Q. Huo and G. Stucky, Mater. Res. Bull. 34 (1999) 483.

    Google Scholar 

  13. M. Lindén, J. Blanchard, S. Schacht, S.A. Schunk and F. Schüth, Chem. Mater. 11 (1999) 3002.

    Google Scholar 

  14. M. Mamak, N. Coombs and G. Ozin, Adv. Mater. 12 (2000) 198.

    Google Scholar 

  15. H.-R. Chen, J.-L. Shi, J. Yu, L.-Z. Wang and D.-S. Yan, Microporous Mesoporous Materials 39 (2000) 171.

    Google Scholar 

  16. V.I. Pârvulescu, V. Pârvulescu, U. Endruschat, C.W. Lehman, P. Grange, G. Poncelet and H. Bönnemann, Microporous Mesoporous Materials 44–45 (2001) 221.

    Google Scholar 

  17. M.S. Wong, D.M. Antonelli and J.Y. Ying, Nanostructured Materials 9 (1997) 165.

    Google Scholar 

  18. M.S. Wong and J.Y. Ying, Chem. Mater. 10 (1998) 2067.

    Google Scholar 

  19. D.M. Antonelli, Adv. Mater. 11 (1999) 487.

    Google Scholar 

  20. Y. Huang and W.M.H. Sachtler, Chem. Commun. (1997) 1181.

  21. G. Pacheco, E. Zhao, P. Diaz Valdes, A. Garcia and J.J. Fripiat, Microporous Mesoporous Materials 21 (1999) 175.

    Google Scholar 

  22. G. Pacheco and J.J. Fripiat, J. Phys. Chem. 104 (2000) 11906.

    Google Scholar 

  23. Y.-Y. Huang, T.J. McCarthy and W.M.H. Sachtler, Appl. Catal. A: General 148 (1996) 135.

    Google Scholar 

  24. N.K. Simha, J. de Physique IV 5 (1995) C8-1121.

    Google Scholar 

  25. X. Song and A. Sayari, Catal. Rev., Sci. Eng. 38 (1996) 329.

    Google Scholar 

  26. J.B. Laizet, A.K. Søiland, J. Leglise and I.C. Duchet, Topics Catal. 10 (2000) 89.

    Google Scholar 

  27. K. Arata, M. Hino and N. Yamagata, Bull. Chem. Soc. Jpn. 63 (1990) 244.

    Google Scholar 

  28. T. Ressler, J. Synch. Rad. 5 (1998) 118.

    Google Scholar 

  29. T. Ressler, S.L. Brock, J. Wong and S.L. Suib, J. Phys. Chem. B 103 (1999) 6407.

    Google Scholar 

  30. J.J. Rehr, C.H. Booth, F. Bridges and S.I. Zabinsky, Phys. Rev. B 49 (1994) 12347.

    Google Scholar 

  31. J.D. McMullough, Acta Cryst. 1 (1967) 1948.

    Google Scholar 

  32. C.J. Howard, E.H. Kisi, R.B. Roberts and R.J. Hill, J. Am. Ceram. Soc. 73 (1990) 2828.

    Google Scholar 

  33. G. Katz, J. Am. Ceram. Soc. 54 (1971) 531.

    Google Scholar 

  34. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edition (Academic Press, London, 1982).

    Google Scholar 

  35. E.P. Barrett, L.G. Joyner and P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373.

    Google Scholar 

  36. M. Selle and S. Ernst, Microporous Mesoporous Materials 27 (1999) 355.

    Google Scholar 

  37. B. Pauwels, G. Van Tendeloo, C. Thoelen, W. Van Rhijn and P. Jacobs, Adv. Mater. 13 (2001) 1317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Jentoft, F., Jentoft, R. et al. Sulfated Zirconia with Ordered Mesopores as an Active Catalyst for n-Butane Isomerization. Catalysis Letters 81, 25–31 (2002). https://doi.org/10.1023/A:1016095603350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016095603350

Navigation