Skip to main content
Log in

Investigation of Metal-Dusting Mechanism in Fe-Base Alloys Using Raman Spectroscopy, X-Ray Diffraction, and Electron Microscopy

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The metal-dusting phenomenon, which is a metal loss process that occurs in hot reactive gases, was investigated in iron and certain iron-base alloys by Raman scattering, X-ray diffraction (XRD), and scanning-electron microscopy (SEM). Coke from metal dusting exhibits six Raman bands at 1330(D band), 1580(G band), 1617, 2685, 3920, and 3235 cm-1. The bandwidths and the relative intensities of the 1330 and 1580 cm-1 bands are related to the crystallinity and defect structure of the coke. Both Raman and XRD analyses suggest that the metal-dusting process influences the catalytic crystallization of carbon. A new mechanism of metal dusting is, therefore, proposed, based on the premise that coke cannot crystallize well by deposition from carburizing gases at low temperature without catalytic activation because of its strong C–C bonds and high melting temperature. Cementite or iron participates in the coke-crystallizing process in a manner that tends to improve the crystallinity of the coke. At the same time, fine iron or cementite particles are liberated from the pure metal or alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. A. Lafrancois and W. B. Hoyt, Corrosion 19(10), 360t (1963).

    Google Scholar 

  2. R. F. Hochman, Proceedings of the 4th International Congress on Metallic Corrosion, N. E. Hamner, ed. (National Assoc. of Corrosion Engineers, 1972), pp. 258-263.

  3. R. C. Schueler, Hydrocarbon Process. 51, 73 (1972).

    Google Scholar 

  4. R. F. Hochman, Proceedings of the Symposium on Properties of High-Temperature Alloys with Emphasis on Environmental Effects, Z. A. Foroulis and F. S. Pettit, eds. (The Electrochemical Society, Pennington, NJ, 1977), pp. 715–732.

    Google Scholar 

  5. H. J. Grabke, J. Hemptenmacher, and A. Munker, Werkst. Korros. 35, 543 (1984).

    Google Scholar 

  6. R. A. Perkins, W. C. Coons, and F. J. Radd, Proceedings of the Symposium on Properties of High-Temperature Alloys (The Electrochemical Soc., Pennington, NJ, 1976), p. 733.

    Google Scholar 

  7. E. Pippel, J. Woltersdorf, H. J. Grabke, and S. Strauss, Steel Res. 66, 217 (1995).

    Google Scholar 

  8. H. J. Grabke, Mater. Corros. 49, 303 (1998).

    Google Scholar 

  9. M. Maier and J. F. Norton, Mater. Corros. 50, 640 (1999).

    Google Scholar 

  10. E. Q. Camp, C. Phillips, and L. Gross, Corrosion 1, 149 (1945); Corrosion 15, 627t (1959).

    Google Scholar 

  11. H. J. Grabke and G. Tauber, Arch. Eisenhuttenwes. 46, 215 (1975).

    Google Scholar 

  12. S. R. Shatynski, H. J. Grabke, and S. Strauss, Arch. Eisenhuttenwes. 49, 129 (1978).

    Google Scholar 

  13. R. E. Franklin, Acta Crystallogr. 4, 253 (1951).

    Google Scholar 

  14. H. Krebs, Fundamentals of Inorganic Crystal Chemistry (McGraw-Hill, New York, 1968), p. 150.

    Google Scholar 

  15. R. O. Dillon and J. A. Woollam, Phys. Rev. B 29, 3482 (1984).

    Google Scholar 

  16. F. Tuinstra and J. L. Koenig, J. Chem. Phy. 53, 1126 (1970).

    Google Scholar 

  17. M. Nakamizo, H. Honda, M. Inagaki, and Y. Hishiyama, Carbon 15, 295 (1977).

    Google Scholar 

  18. M. Nakamizo, H. Honda, and M. Inagaki, Carbon 16, 281 (1978).

    Google Scholar 

  19. H. J. Grabke and E. M. Muller-Lorenz, Mater. Corros. 49, 317 (1998).

    Google Scholar 

  20. S. Strauss and H. K. Grabke, Mater. Corros. 49, 321 (1998).

    Google Scholar 

  21. R. L. Farrow, R. E. Benner, A. S. Nagelberg, and P. L. Mattern, Thin Solid Film 73, 353 (1980).

    Google Scholar 

  22. D. Thierry, D. Persson, C. Leygraf, D. Delichere, S. Joiret, C. Pallotta, and A. Hugot-Le Goff, J. Electrochem. Soc. 135, 305 (1988).

    Google Scholar 

  23. V. A. Maroni, C. A. Melendres, T. F. Kassner, R. Kumar, and S. Siegel, J. Nucl. Mater. 172, 13 (1990).

    Google Scholar 

  24. R. J. Thibeau, C. W. Brown, and R. H. Heidersbach, Appl. Spectrosc. 32, 532 (1978).

    Google Scholar 

  25. D. R. Lide, CRC Handbook of Chemistry and Physics, 80th (CRC Press, Boca Raton, FL, 1999), P12–119 to P12-123.

    Google Scholar 

  26. H. E. Blayden, H. L. Riley, and A. Taylor, J. Amer. Chem. Soc. 62, 180 (1940).

    Google Scholar 

  27. W. D. Schaeffer, W. R. Smith, and M. H. Polley, Ind. Eng. Chem. 45, 1721 (1953).

    Google Scholar 

  28. C. R. Kinney, Proc. Conference on Carbon, University of Buffalo, Buffalo, New York, 1956), p. 83.

    Google Scholar 

  29. A. E. Austin and W. A. Hedden, Ind. Eng. Chem. 46, 1520 (1954).

    Google Scholar 

  30. R. J. Nemanich and S. A. Solin, Phys. Rev. B 20, 392 (1979).

    Google Scholar 

  31. R. Al-Jishi, Phys. Rev. B 26, 4514 (1982).

    Google Scholar 

  32. R. Vidano and D. B. Fischbach, J. Amer. Ceram. Soc. 61, 13 (1978).

    Google Scholar 

  33. D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).

    Google Scholar 

  34. R. J. Nemanich and S. A. Solin, Solid State Commun. 23, 417 (1977).

    Google Scholar 

  35. Y. Sato, M. Kamo, and N. Setaka, Carbon 16, 279 (1978).

    Google Scholar 

  36. C. M. Chun, T. A. Ramanarayannan, and J. D. Murnford, Mater. Corros. 50, 634 (1999).

    Google Scholar 

  37. M. Nakamizo, R. Kammereck, and P. L. Walker, Carbon 12, 259 (1974).

    Google Scholar 

  38. R. Kammereck, M. Nakamizo, and P. L. Walker, Carbon 12, 281 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Z., Natesan, K. & Maroni, V. Investigation of Metal-Dusting Mechanism in Fe-Base Alloys Using Raman Spectroscopy, X-Ray Diffraction, and Electron Microscopy. Oxidation of Metals 58, 147–170 (2002). https://doi.org/10.1023/A:1016068625429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016068625429

Navigation