Skip to main content
Log in

Oceanic Velocity Microstructure Measurements in the 20th Century

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The science of ocean turbulence was started more than 50 years ago by a small research group using a surplus mine-sweeping paravane to measure the velocity and temperature fluctuations in the ocean. The field has grown considerably and measurements are now conducted by researchers in many countries. A wide variety of sophisticated instrument systems are used to profile horizontally and vertically through the marine environment. Here we review the historical development of velocity micro-structure profiles over the past four decades and summarize the basic requirements for successful measurements. We highlight critical technological developments and glance briefly at some of the scientific discoveries made with these instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arvan, B. M., V. V. Kushinikov, V. N. Nabatov and V. T. Paka (1985): Free-falling microstructure sonde “Baklan”. p. 8–12. In Methods and Technology of Hydrophysical and Geophysical Studies in the World Ocean, P. P. Shirshov Institute of Oceanology, Moscow (in Russian).

    Google Scholar 

  • Batchelor, G. K. (1959): Small scale variation of convected quantities like temperature in a fluid. J. Fluid Mech., 5, 113–133.

    Article  Google Scholar 

  • Belyaev, V. S., M. M. Lubimtzev and R. V. Ozmidov (1975): The rate of dissipation of turbulent energy in the upper layer of the ocean. J. Phys. Oceanogr., 5, 499–505.

    Article  Google Scholar 

  • Bertuccioli, L., G. Roth, J. Katz and T. Osborn (1999): Turbulence measurements in the bottom boundary layer using Particle Image Velocimetry. J. Atmos. Ocean. Tech., 16, 1635–1646.

    Article  Google Scholar 

  • Caldwell, D. R., T. M. Dillon and J. N. Moum (1985): The Rapid-Sampling Vertical Profiler: an evaluation. J. Atmos. Ocean. Tech., 2, 615–625.

    Article  Google Scholar 

  • Converse, C. H., A. J. Williams, P. D. Fucille and R. W. Schmitt (1986): A free ocean vehicleto measure optical microstructure. Current Practices and New Technology in Ocean Engineering, 11, 341–345.

    Google Scholar 

  • Crawford, W. R. (1982): Pacific equatorial turbulence. J. Phys. Oceanogr., 12, 1137–1149.

    Article  Google Scholar 

  • Crawford, W. R. and T. R. Osborn (1980): Microstructure measurements in the equatorial Atlantic undercurrent during Gate. Deep-Sea Res., Supplement to 26, Appendix 1, 285–308.

    Google Scholar 

  • Dewey, R. K., W. R. Crawford, A. E. Gargett and N. S. Oakey (1987): A microstructure instrument for profiling oceanic turbulence in coastal bottom boundary layers. J. Atmos. Ocean. Tech., 4, 288–297.

    Article  Google Scholar 

  • Dhanak, M. R. and K. Holappa (1999): An autonomous ocean turbulence measurement platform. J. Atmos. Ocean. Tech., 16, 1506–1518.

    Article  Google Scholar 

  • Doron, P., L. Bertuccioli, J. Katz and T. R. Osborn (2001): Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J. Phys. Oceanogr., 31, 2108–2134.

    Article  Google Scholar 

  • Fabula, A. G. (1968): The dynamic response of towed thermometers. J. Fluid Mech., 34, 449–464.

    Article  Google Scholar 

  • Fleury, M. and R. G. Lueck (1991): Fluxes across a thermohaline interface. Deep-Sea Res., 38, 745–769.

    Article  Google Scholar 

  • Fleury, M. and R. G. Lueck (1992): Microstructure in and around a double-diffusive interface. J. Phys. Oceanogr., 22, 701–718.

    Article  Google Scholar 

  • Fleury, M. and R. G. Lueck (1994): Direct heat flux estimates using a towed vehicle. J. Phys. Oceanogr., 24, 701–718.

    Article  Google Scholar 

  • Gallager, S., H. Yamazaki and C. Davis (2002): The contribution of finescale vertical structure and swimming behavior to the formation of plankton layers on Georges Bank. Mar. Ecol. Prog. Ser. (in press).

  • Gargett, A. E. (1978): Microstructure and fine structure in an upper ocean frontal regime. J. Geophys. Res., 83,C10, 5123–5134.

    Google Scholar 

  • Gargett, A. E. and R. W. Schmitt (1982): Observations of salt fingers in the central waters of the eastern north Pacific. J. Geophys. Res., 87,C10, 8017–8029.

    Google Scholar 

  • Gargett, A. E., T. R. Osborn and P. W. Nasmyth (1984): Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech., 144, 231–280.

    Article  Google Scholar 

  • Grant, H. L., R. W. Stewart and A. Moilliet (1962): Turbulence spectra from a tidal channel. J. Fluid Mech., 12, 241–263.

    Article  Google Scholar 

  • Grant, H. L., B. A. Hughes, W. M. Vogel and A. Moilliet (1968a): The spectrum of temperature fluctuations in turbulent flow. J. Fluid Mech., 34, 423–443.

    Article  Google Scholar 

  • Grant, H. L., A. Moilliet and W. M. Vogel (1968b): Some observations of the occurrence of turbulence in and above the thermocline. J. Fluid Mech., 34, 443–498.

    Article  Google Scholar 

  • Greenan, B. J. W. and N. S. Oakey (1999): A tethered free-fall glider to measure ocean turbulence. J. Atmos. Ocean. Tech., 16, 1545–1555.

    Article  Google Scholar 

  • Gregg, M. C., W. C. Holland, E. E. Aagaard and D. H. Hirt (1982): Use of a fibre-optic cable with a free-fall microstructure profiler. IEEE/MTS Ocean '82 Conference Proceedings I, IEEE/MTS, 260–265.

  • Hashimoto, H. and Y. Takasugi (1998): Measurement of the vertical mixing strength in a bay using the uprising MSP. Coastal Engineering, 45, 966–970 (in Japanese).

    Google Scholar 

  • Hayes, S. P., H. B. Milburn and E. F. Ford (1984): TOPS: A free-fall velocity and CTD Profiler. J. Atmos. Ocean. Tech., 1, 220–236.

    Article  Google Scholar 

  • Johnson, G. C., R. G. Lueck and T. B. Sanford (1994): Stress on the Mediterranean outflow plume: Part 2. Turbulent dissipation and shear measurements. J. Phys. Oceanogr., 24, 2084–2092.

    Article  Google Scholar 

  • Kanari, S. (1991): Micro-Scale Profiler (MSP) for measurement of small-scale turbulence in the ocean. J. Oceanogr. Soc. Japan, 47, 17–25.

    Article  Google Scholar 

  • Kolmogorov, A. N. (1941): Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Doklady AN SSSR, 30,No. 4, 299–303.

    Google Scholar 

  • Levine, E. R. and R. G. Lueck (1999): Turbulence measurements from an autonomous underwater vehicle. J. Atmos. Ocean. Tech., 16, 1533–1544.

    Article  Google Scholar 

  • Levine, E. R., R. G. Lueck, R. R. Shell and P. Licis (2001): AUV-based turbulence characterisation for coastal predictive networks. Fifth Symposium on Integrated Observing Systems, 14–18 January, 2001, Albuquerque, New Mexico, sponsored by the American Meteorological Society, 16–20.

  • Lueck, R. G. (1980): The calibration of a hot film turbulence probe. J. Geophys. Res., 85,C9, 4923–4932.

    Google Scholar 

  • Lueck, R. G. (1987): Microstructure measurements in a thermohaline staircase. Deep-Sea Res., 34, 1677–1688.

    Article  Google Scholar 

  • Lueck, R. G. and D. Huang (1999): Dissipation measurement with a moored instrument in a swift tidal channel. J. Atmos. Ocean. Tech., 16, 1499–1505.

    Article  Google Scholar 

  • Lueck, R. G. and T. R. Osborn (1982): Dissipation from the FRONT-80 expedition. Manuscript Rep., 38, Dep. of Oceanogr. Univ. of B.C., Vancouver, Canada.

    Google Scholar 

  • Lueck, R. G. and T. R. Osborn (1985): Turbulence measurements in a submarine canyon. Cont. Shelf Res., 4, 681–698.

    Article  Google Scholar 

  • Lueck, R. G., W. C. Crawford and T. R. Osborn (1983): Turbulent dissipation over the continental slope off Vancouver Island. J. Phys. Oceanogr., 13, 1809–1818.

    Article  Google Scholar 

  • Lueck, R. G., D. Huang, D. Newman and J. Box (1997): Turbulence measurement with a moored instrument. J. Atmos. Ocean. Tech., 14, 143–161.

    Article  Google Scholar 

  • Luyten, J. R., G. Needell and J. Thomson (1982): An acoustic drop-sonde—the White Horse: Design, performance and evaluation. Deep-Sea Res., 29, 499–524.

    Article  Google Scholar 

  • Macoun, P. and R. Lueck (2002): On the wavenumber resolution of shear probes. J. Atmos. Ocean. Tech. (submitted).

  • Miller, J. B., M. C. Gregg, V. W. Miller and G. L. Welch (1989): Vibration of tethered microstructure profilers. J. Atmos. Ocean. Tech., 6, 980–984.

    Article  Google Scholar 

  • Moum, J. N. and R. G. Lueck (1985): Causes and implications of noise in oceanic dissipation measurements. Deep-Sea Res., 32, 379–390.

    Article  Google Scholar 

  • Moum, J. N. and T. R. Osborn (1986): Mixing in the main thermocline. J. Phys. Oceanogr., 16, 1250–1259.

    Article  Google Scholar 

  • Moum, J. N., M. C. Gregg, R. C. Lien and M. E. Carr (1995): Comparison of turbulence kinetic energy dissipation rate estimates from two ocean microstructure profilers. J. Atmos. Ocean. Tech., 12, 346–366.

    Article  Google Scholar 

  • Moum, J. N., D. R. Caldwell, J. D. Nash and G. D. Gunderson (2001): Observations of boundary mixing over the continental slope. J. Phys. Oceanogr. (submitted).

  • Nash, J. D., D. R. Caldwell, M. J. Zelman and J. N. Moum (1999): A thermocouple probe for high-speed temperature measurements in the ocean. J. Atmos. Ocean. Tech., 16, 1474–1482.

    Article  Google Scholar 

  • Nasmyth, P. W. (1970): Ocean turbulence. Ph.D. Thesis, Univ. of British Columbia, Vancouver, Canada, 69 pp.

    Google Scholar 

  • Nimmo-Smith, W., W. Zhu, L. Luznik, J. Katz and T. Osborn (2001): PIV measurements in the bottom boundary layer of the coastal ocean. Experiments in Fluids (in press).

  • Ninnis, R. (1984): The effects of spatial averaging on airfoil probe measurements of oceanic velocity microstructure. Ph.D. Thesis, Univ. of British Columbia, Vancouver, Canada, 109 pp.

    Google Scholar 

  • Oakey, N. S. (1977): Octuprobe III: An instrument to measure oceanic turbulence and microstructure. Tech. Rep. BI-R-77–3, Bedford Inst. of Oceanogr., Dartmouth, Nova Scotia, Canada, 52 pp.

    Google Scholar 

  • Oakey, N. S. (1982): Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256–271.

    Article  Google Scholar 

  • Oakey, N. S. (1988): EPSONDE: An instrument to measure turbulence in the deep ocean. IEEE J. Ocean. Eng., 13, 124–128.

    Article  Google Scholar 

  • Osborn, T. R. (1974): Vertical profiling of velocity microstructure. J. Phys. Oceanogr., 4, 109–115.

    Article  Google Scholar 

  • Osborn, T. R. (1980): Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83–89.

    Article  Google Scholar 

  • Osborn, T. R. (1988): Signatures of double diffusive convection and turbulence in an intrusive regime. J. Phys. Oceanogr., 18, 145–155.

    Article  Google Scholar 

  • Osborn, T. R. and W. R. Crawford (1980): An airfoil probe for measuring turbulence velocity fluctuation in water. In Air-Sea Interaction, Instruments and Methods, ed. by F. Dobson, L. Hasse and R. Davis, Plenum, 801 pp.

  • Osborn, T. R. and R. G. Lueck (1985a): Turbulence measurements with a submarine. J. Phys. Oceanogr., 15, 1502–1520.

    Article  Google Scholar 

  • Osborn, T. R. and R. G. Lueck (1985b): Turbulence measurements from a towed body. J. Atmos. Ocean. Tech., 2, 517–527.

    Article  Google Scholar 

  • Osborn, T. R., D. M. Farmer, S. Vagle, S. A. Thorpe and M. Cure (1992): Measurements of bubble plumes and turbulence from a submarine. Atmos.-Ocean., 30, 419–440.

    Google Scholar 

  • Paka, V. T., V. N. Nabatov, I. D. Lozovatsky and T. M. Dillon (1999): Oceanic microstructure measurements by BAKLAN and GRIF. J. Atmos. Ocean. Tech., 16, 1519–1532.

    Article  Google Scholar 

  • Prandke, H. (1994): Tests and intercalibrations of an improved airfoil shear probe. Tech. Rep., ME Meerestechnik-Elektronik GmbH [available through ISW Wassermesstechnik GmbH, Lenzer Str. 4, 17213 Petersdorf, Germany].

  • Prandke, H. and A. Stips (1985): Free sinking probe for horizontal coherence investigation of microstructure. Beiträge zur Meereskunde, 53, 69–70.

    Google Scholar 

  • Prandke, H. and A. Stips (1992): A model of Baltic thermocline turbulence patches, deduced from experimental investigations. Cont. Shelf Res., 12, 643–659.

    Article  Google Scholar 

  • Prandke, H., S. Krüger and W. Roeder (1985): Design and operating priciple of a free falling probe for the investigation of oceanic thermohaline microstructure. Acta Hydrophysica, 24, 165–210 (in German).

    Google Scholar 

  • Prandke, H., K. Holtsch and A. Stips (2000): MITEC technology development: The microstructure/turbulence measuring system MSS. Tech. Rep. EUR19733EN, Space Application Institute, Joint Research Centre European Commission, Ispra, Italy, 64 pp.

    Google Scholar 

  • Schmitt, R. W., J. M. Toole, R. L. Koehler, E. C. Mellinger and K. W. Doherty (1988): The development of a fine-and micro-structure profiler. J. Atmos. Ocean. Tech., 5, 484–500.

    Article  Google Scholar 

  • Siddon, T. E. (1965): A turbulence probe utilizing aerodynamic lift. Tech. Rep., 88, Univ. of Toronto, Toronto, Ontario, Canada.

    Google Scholar 

  • Siddon, T. E. (1971): A miniature turbulence gauge utilizing aerodynamic lift. Rev. Sci. Inst., 42, 653–656.

    Article  Google Scholar 

  • Siddon, T. E. and H. S. Ribner (1965): An aerofoil probe for measuring the transverse component of turbulence. J. American Inst. Aeronautics and Astronautics, 3, 747–749.

    Google Scholar 

  • Simpson, J. H. (1972): A free fall probe for the measurement of velocity shear. Deep-Sea Res., 19, 331–336.

    Google Scholar 

  • Stahr, F. R. and T. B. Sanford (1999): Transport and bottom boundary layer observations of the North Atlantic Deep Western Boundary Current at the Blake Outer Ridge. Deep-Sea Res., 46, 205–243.

    Google Scholar 

  • Stewart, R. W. and H. L. Grant (1999): Early measurements of turbulence in the ocean: Motives and techniques. J. Atmos. Ocean. Tech., 16, 1467–1473.

    Article  Google Scholar 

  • Thorpe, S. A., T. R. Osborn, J. Jackson, A. J. Hall and R. G. Lueck (2002): Measurements of turbulence in an upper ocean mixing layer using AUTOSUB. J. Phys. Oceanogr. (submitted).

  • Winkel, D. P., M. C. Gregg and T. B. Sanford (1996): Resolving oceanic shear and velocity with the Multi-Scale Profiler. J. Atmos. Ocean. Tech., 13, 1046–1072.

    Article  Google Scholar 

  • Wolk, F. and R. G. Lueck (2001): Heat flux and mixing efficiency in the surface mixing layer. J. Geophys. Res., 106, 19,547–19,562.

    Article  Google Scholar 

  • Wolk, F., L. Seuront and H. Yamazaki (2001): Spatial resolution of a new micro-optical probe for chlorophyll and turbidity. J. Tokyo Univ. Fisheries, 87, 13–21.

    Google Scholar 

  • Wolk, F., H. Yamazaki, L. Seuront and R. G. Lueck (2002): A new free-fall profiler for measuring bio-physical microstructure. J. Atmos. Ocean. Tech. (in press).

  • Yamazaki, H. and T. R. Osborn (1993): Direct estimation of heat flux in a seasonal thermocline. J. Phys. Oceanogr., 23, 503–516.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lueck, R.G., Wolk, F. & Yamazaki, H. Oceanic Velocity Microstructure Measurements in the 20th Century. Journal of Oceanography 58, 153–174 (2002). https://doi.org/10.1023/A:1015837020019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015837020019

Navigation