Skip to main content
Log in

The Interface Kinetics of Crystal Growth Processes

  • Published:
Interface Science

Abstract

A brief review of the present state of our understanding of the kinetic processes which take place on the atomic scale at the interface during crystal growth is presented in this paper. Computer simulations have played a central role in the development of this understanding. Three aspects will be discussed:

(1) There are two classes of materials based on their different modes of crystallization. Molecular dynamics modeling has demonstrated that the growth rate for many simple materials is not thermally activated, but instead depends on the thermal velocity of the atoms.

(2) The cooperative processes which give rise to the surface roughening transition. Kinetic Monte Carlo studies played a central role in the development of our understanding of how interface roughness dominates growth morphologies.

(3) Solute trapping in alloys. Kinetic Monte Carlo simulations of alloys have led to an understanding of these kinetic effects during alloy crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Wilson. Phil. Mag. 50, 238 (1900).

    Google Scholar 

  2. J. Frenkel, Physik Z. der Sowjet Union 1, 498 (1932).

    Google Scholar 

  3. M.H. Grabow, G.H. Gilmer, and A.F. Bakker, Mat. Res. Soc. Symp. Proc. 141, 349 (1989).

    Google Scholar 

  4. F.H. Stillinger and T. Weber, Phys. Rev. B 31, 5262 (1985).

    Google Scholar 

  5. J.A. Yater and M.O. Thompson, Phys. Rev. Lett. 63, 2088 (1989).

    Google Scholar 

  6. J.Q. Broughton, G.H. Gilmer, and K.A. Jackson, Phys. Rev. Lett. 49, 1496 (1982).

    Google Scholar 

  7. D. Turnbull and B.G. Bagley, Treatise on Solid State Chem. 5, 526 (1975); F. Spaepen and D. Turnbull, Proc. Conf. on Laser-Solid Interactions, edited by S.D. Ferris et al., AIP Conf. Proc. (1979), Vol. 50, p. 73.

    Google Scholar 

  8. W. Ruhl and P. Hilsch, Z. Phys. B 26, 161 (1977).

    Google Scholar 

  9. D. Turnbull, Metall. Trans. A 12, 693 (1981).

    Google Scholar 

  10. S.R. Coriell and D. Turnbull, Acta Metall. 30, 2135 (1982).

    Google Scholar 

  11. G.H. Rodway and J.D. Hunt, J. Cryst. Growth 112, 554 (1991).

    Google Scholar 

  12. H.J. Leamy and K.A. Jackson, J. App. Phys. 42, 2121 (1971).

    Google Scholar 

  13. H.J. Leamy and G.H. Gilmer, J. Cryst. Growth 24/25, 499 (1974).

    Google Scholar 

  14. H.J. Leamy, G.H. Gilmer, and K.A. Jackson, in Surface Physics of Materials, edited by J.M. Blakeley (Academic Press, New York, 1975), p. 319.

    Google Scholar 

  15. G.H. Gilmer and K.A. Jackson, in Crystal Growth and Materials, edited by E. Kaldis and H.J. Scheel (North-Holland, 1977), p. 80.

  16. J.D. Weeks and G.H. Gilmer, Adv. Chem. Phys. 40, 157 (1979).

    Google Scholar 

  17. K.A. Jackson, G.H. Gilmer, D.E. Temkin, J.D. Weinberg, and K.M. Beatty, J. Cryst. Growth 128, 127 (1993).

    Google Scholar 

  18. K.A. Jackson, G.H. Gilmer, and D. Temkin, Phys. Rev. Let. 75, 2530 (1995).

    Google Scholar 

  19. K.A. Jackson, G.H. Gilmer, D.E. Temkin, and K.M. Beatty, J. Cryst. Growth 163, 461 (1996).

    Google Scholar 

  20. K.M. Beatty and K.A. Jackson, J. Cryst. Growth 174, 28 (1997).

    Google Scholar 

  21. K.A. Jackson, Liquid Metals and Solidification (ASM Cleveland, 1958), p. 174; Growth and Perfection of Crystals, edited by Doremus et al. (Wiley, New York, 1958), p. 319.

  22. J.A. Yater and M.O. Thompson, Phys. Rev. Lett. 49, 1496 (1982).

    Google Scholar 

  23. Kirk M. Beatty and Kenneth A. Jackson, J Crystal Growth 211, 13 (2000).

    Google Scholar 

  24. W.D. Edwards, Canad. J. Phys. 38, 439 (1960).

    Google Scholar 

  25. T.F. Ciszek, in Semiconductor Silicon, edited by R.R. Haberecht and E.L. Kern (The Electrochemical Society, 1969), p. 156.

  26. T. Abe, J. Cryst. Growth 24/25, 463 (1974).

    Google Scholar 

  27. P. Baeri, J.M. Poate, S.U. Campisano, G. Foti, E. Rimini, and A.G. Cullis, App. Phys. Let. 37, 912 (1980).

    Google Scholar 

  28. P. Baeri, G. Foti, J.M. Poate, S.U. Campisano, and A.G. Cullis, App. Phys. Let. 38, 800 (1981).

    Google Scholar 

  29. C.W. White, S.R. Wilson, B.R. Appleton, and F.W. Young Jr., J. App. Phys. 51, 738 (1980).

    Google Scholar 

  30. C.W. White, B.R. Appleton, B. Stritzker, Z.D.M., and S.R. Wilson, in MRS Symp. Proc. 1, 59 (1981).

    Google Scholar 

  31. P. Baeri, G. Foti, J.M. Poate, S.U. Campisano, E. Rimini, and A.G. Cullis, in MRS Symp. Proc. 1, 67 (1981).

    Google Scholar 

  32. M.J. Aziz, J. Y. Tsao, M.O. Thompson, P.S. Peercy, C.W. White, and W.H. Christie, in MRS Symp. Proc. 35, 153 (1985).

    Google Scholar 

  33. M.J. Aziz, J.Y. Tsao, M.O. Thompson, P.S. Peercy, and C.W. White, Phys. Rev. Let. 56, 2489 (1986).

    Google Scholar 

  34. M.J. Aziz and C.W. White, Phys. Rev. Let. 57, 2675 (1986).

    Google Scholar 

  35. J.A. Kittl, M.J. Aziz, D.P. Brunco, and M.O. Thompson, J. Cryst. Growth 148, 172 (1995).

    Google Scholar 

  36. D.E. Hoglund, M.J. Aziz, S.R. Stiffler, M.O. Thopmson, J.Y. Tsao, and P.S. Peercy, J. Crystal Growth 109, 107 (1991).

    Google Scholar 

  37. P.M. Smith, R. Reitano, and M.J. Aziz, in MRS Symp. Proc. 279, 749 (1993).

    Google Scholar 

  38. P.M. Smith and M.J. Aziz, Acta Met. et Mat. 42, 3515 (1994).

    Google Scholar 

  39. A.J.R. de Kock, in Crystal Growth and Materials, edited by E. Kaldis (North-Holland, 1977), p. 693.

  40. D.E. Temkin, Sov. Phys. Cryst. 17, 405 (1972).

    Google Scholar 

  41. K.A. Jackson and K. M. Beatty, to be published.

  42. C.B. Arnold, M.J. Aziz, M. Schwartz, and D. Herlach, Phys. Rev. B 59, 334 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, K.A. The Interface Kinetics of Crystal Growth Processes. Interface Science 10, 159–169 (2002). https://doi.org/10.1023/A:1015824230008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015824230008

Navigation