Skip to main content
Log in

Effects of a lichen galactomannan and its vanadyl (IV) complex on peritoneal macrophages and leishmanicidal activity

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A galactomannan (GMPOLY) isolated from lichen Ramalina celastri was complexed with vanadyl ion (IV;VO) forming the complex GMPOLY-VO. Both GMPOLY and GMPOLY-VO diminished the superoxide anion production by macrophages triggered with PMA, the complex giving rise to this effect at concentrations 100 times lower than GMPOLY. Macrophages treated with GMPOLY enhanced the nitric oxide production (40%), this effect not being observed when interferon-γ ((IFN-γ) or IFN-γ plus lipopolysaccharide (LPS) were present. No effect on nitric oxide production was observed by treatment of macrophage with GMPOLY-VO. Both GMPOLY and GMPOLY-VO exhibited leishmanicidal effects on the amastigote form of Leishmania amazonesis, but only GMPOLY-VO inhibited the growth of promastigote form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohn JA, BeMiller JN: (1→3)-D-Glucans as biological response modifiers: A review of functional activity relationships. Carbohydr Polym 28: 3–14, 1995

    Google Scholar 

  2. Müller A, Rice PJ, Ensley HE, Coogan PS, Kalbfleisch JH, Kelley JL, Love EJ, Portera CA, Ha T, Browder IW, Williams DL: Receptor binding and internalization of a water-soluble (1→3)-β-D-Glucan biologic response modifier in two monocyte/macrophages cell lines. J Immunol 156: 3418–3425, 1996

    Google Scholar 

  3. Konopski Z, Smedsrod B, Seljelid R, Eskelund T: A novel immunomodulator soluble aminated β-1,3-D-glucan: Binding characteristics to mouse peritoneal macrophages. Biochem Biophys Acta 1221: 61–65, 1994

    Google Scholar 

  4. Kuliche WM, Lettau AI, Thielking H: Correlation between immunological activity, molar mass, and molecular structure of different (1→3)-β-D-glucans. Carbohydr Res 297: 135–143, 1997

    Google Scholar 

  5. Cohen MD, McManus TP, Yang Z, Qu Q, Schlesinger RB, Zelikoff J: Vanadium affects macrophages interferon-γ-binding and inducible responses. Toxicol Appl Pharmacol 138: 110–120, 1996

    Google Scholar 

  6. Tsuji A, Sakurai H: Vanadyl ion suppresses nitric oxide production from peritoneal macrophages of streptozotocin-induced diabetic mice. Biochem Biophys Res Commun 226: 506–511, 1996

    Google Scholar 

  7. Grabowski AM, Paulauski JD, Goldleski JJ: Mediating phosphorylation events in the vanadium-induced respiratory burst of alveolar macrophages. Toxicol Appl Pharmacol 156: 170–178, 1999

    Google Scholar 

  8. Demleitner S, Kraus J, Franz G: Synthesis and antitumour activity of derivatives of curdlan and lichenan branched at C-6. Carbohydr Res 226: 1239–246, 1992

    Google Scholar 

  9. Badway JA, Karnovski ML: Active oxygen species and the functions of phagocytic leukocytes. Ann Rev Biochem 49: 695, 1980

    Google Scholar 

  10. Berton G, Gordon S: Modulation of macrophages mannosyl; specific receptors by cultivation on immobilized zymosan. Effects on superoxide-anion release and phagocytosis. Immunology 49: 705–715, 1983

    Google Scholar 

  11. Ramamoorthy L, Kemp MC, Tizard IR: Acemannan, a β-(1→4)-acetylated mannan, induces nitric oxide production in macrophages cell line RAW 264.7. Mol Pharmacol 50: 878–884, 1996

    Google Scholar 

  12. Hashimoto T, Ohno N, Yadomae T: Subgroupping immunomodulating β-glucans by monitoring IFN-γ and NO syntheses. Drug Dev Res 42: 35–40, 1997

    Google Scholar 

  13. Cross GG, Jennings HJ, Whitefield DM, Penny CL, Zacharie B, Gagnon L: Immunostimulant oxidized β-glucan conjugates. Int Immunopharmacol 1: 539–550, 2001

    Google Scholar 

  14. Morinville A, May Singer D, Shaver A: From Vanadis to Atrops: Vanadium compounds as pharmacological tools in cell death signalling. Trends Pharmacol Sci 19: 452–460, 1998

    Google Scholar 

  15. Crans DC: Chemistry and insulin-like properties of vanadium (IV) and vanadium (V) compounds. J Inorg Biochem 80: 123–131, 2000

    Google Scholar 

  16. Yasui H, Takechi K, Sakurai H: Metallokinetic analysis of disposition of vanadyl complexes as insulin-mimetics in rats using BCM-ERS method. J Inorg Biochem 78: 185–196, 2000

    Google Scholar 

  17. Godwaser I, Gefel D, Gerhonov E, Fridkin M, Shechter Y: Insulin-like effects of vanadium: Basic and clinical implications. J Inorg Biochem 80: 21–25, 2000

    Google Scholar 

  18. Cortizo AM, Bruzzone L, Molinuevo S, Etcheverry SB: A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicol 147: 89–99, 2000

    Google Scholar 

  19. Sreedhara A, Nobuyuki S, Patwardham A, Rao CP: One electron reduction of vanadate (V) by low-molecular-weight biocomponents like saccharides and ascorbic acid: Effect of oxovanadium (IV) complexes on pUC18 DNA and on lipid peroxidation in isolated rat hepatocytes. Biochem Biophys Res Commun 224: 115–120, 1996

    Google Scholar 

  20. Cortizo AM, Caporossi M, Lettieri G, Etcheverry SB, Vanadate induced nitric oxide production role in osteoblast growth and differentiation. Eur J Pharmacol 400: 279–285, 2000

    Google Scholar 

  21. Matte C, Marquis J-F, Blanchette J, Gros P, Faure R, Posner BI, Olivier M: Peroxovanadium-mediated protection against murine leishmaniasis: Role of the modulation of nitric oxide. Eur J Immunol 30: 2555–22264, 2000

    Google Scholar 

  22. Tenth Program Report of the UNDP/World/Bank/WHO Special Program for Research and training in Tropical Diseases (TDR), 1991, 79

  23. Roberts WL, Hariprashad J, Rainey PM, Murray WH: Pentavalent antimony conjugate therapy of experimental visceral leishaminiasis. Am J Trop Med Hyg 55: 444–446, 1996

    Google Scholar 

  24. Cantos G, Barbieri C, Iacomini M, Gorin PAJ, Travassos LR: Synthesis of antimony complexes of yeast mannan and mannan derivatives and their effect on Leishmania-infected macrophages. Biochem J 289: 155–160, 1993

    Google Scholar 

  25. Etcheverry SB, Williams PAM, Baron EJ: Synthesis and characterization of oxovanadium (IV) complexes with saccharides. Carbohydr Res 320: 131–138, 1997

    Google Scholar 

  26. Verchére JF, Chapelle S, Xin F, Crans DC: Metal-carbohydrate complexes in solution. Prog Inorg Chem 47: 837–945, 1998

    Google Scholar 

  27. Hudson FTG: In: Toxicological and Biological Significance. Elsevier, New York, 1964, 140

    Google Scholar 

  28. Miceno AM, Gorin PAJ, Iacomini M: Galactomannan and isolichenan components of the carbohydrate-rich lichen Ramalina eckloni (Spreng.) May and Flot. Agric Biol Chem 55: 1391–1392, 1991

    Google Scholar 

  29. Mercê ALR, Spir IHZ, Salmón MJ O, Giannoni RA, Mangrich AS: Model compounds of humic acid and oxovanadium cations. Potentiometric titration and EPR spectroscopy studies. J Braz Chem Soc 10: 463–468, 1999

    Google Scholar 

  30. Furman NH: In: Standard Methods of Chemical Analysis. Vol. I, The Elements. D. van Nostrand Company Inc., New York, 1962

    Google Scholar 

  31. Martell AE, Moteikatis RJ: In: The Determination and Use of Stability Constants. VCH, New York, 1992

    Google Scholar 

  32. Mercê ALR, Szpoganicz B, Dutra RC, Khan X, Thanh D, Bouet G: Potentiometric study of vitamin D3 complexes with cobalt (II), nickel (II) and copper (II) in water-ethanol medium. J Inorg Biochem 71: 87–91, 1998

    Google Scholar 

  33. Mercê ALR, Lombardi SC, Mangrich AS, Szpoganicz B, Reicher F, Sierakowski MR: Equilibrium studies of galactomannan of Cassia fastuosa and Leucaena leucocephala and Cu2+ using potentiometry and EPR spectroscopy. Carbohydr Polym 35: 13–20, 1998

    Google Scholar 

  34. Sasada M, Pabt MJ, Johnston RB Jr: Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide-producing NADPH oxidase. J Biol Chem 258: 9631–9635, 1983

    Google Scholar 

  35. Reilly TP, Belleveue FH III, Worster PM, Svesson CK: Comparison of the in vitro cytotoxicity of hydroxilamine metabolites of sulfamethoxazole and dapsone. Biochem Pharmacol 55: 803–808, 1998

    Google Scholar 

  36. Johnston RB Jr, Godzik CA, Cohn ZA: Increase superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med 48: 115–127, 1978

    Google Scholar 

  37. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR: Analysis of nitrate, nitrite, and [15N nitrates] in biological fluids. Anal Biochem 126: 131–138, 1982

    Google Scholar 

  38. Olivier M, Romero-Gallo BJ, Matte C, Blanchette J, Posner BI, Tremblay MJ, Faure R: Modulation of interferon-γ-induced macrophages activation by phosphotyrosine phosphatase inhibition. J Biol Chem 273: 13944–13949, 1998

    Google Scholar 

  39. Lowry OH, Rosebrough NJ, Farr AC, Radal RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275, 1951

    Google Scholar 

  40. Bradford M: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976

    Google Scholar 

  41. Baes CF, Mesmer RE: In: The Hydrolysis of Cations. Wiley, New York, 1976

    Google Scholar 

  42. Ciardelle F, Tsuchida E, Wöhrle D: In: Macromolecule-Metal Complexes. Spring, Germany, 1995

    Google Scholar 

  43. Sreedhara A, Srinivasa R, Rao CP: Transition metal-saccharide interactions: Synthesis and characterization of vanadyl saccharides. Carbohydr Res 264: 227–235, 1994

    Google Scholar 

  44. Cunha FQ, Assreuy J, Moncada S, Liew FY: Phagocytosis and induction of nitric oxide synthase in murine macrophages. Immunology 79: 408–411, 1993

    Google Scholar 

  45. Molyneux DH, Killick-Kendrick R: Morphology, ultrastructure and lifes cycles. In: W. Petters, R. Killick-Kendrick (eds). The Leishmaniases in Biology and Medicine: Biology and Epidemiology. Academic Press, London, 1987, pp 121–176

    Google Scholar 

  46. Mercê ALR, Fernandes E, Mangrich AS, Sierakowiski MR: Evaluation of the complexes of galactomannan for Leucaena Leucocephala and Co2+, Ni2+ and Zn2+. J Braz Chem Soc 11: 224–231, 2000

    Google Scholar 

  47. Malthlouthi M, Koening JL: Vibrational spectra of carbohydrates. Adv Carbohydr Chem Biochem 44: 7–89, 1986

    Google Scholar 

  48. Williams JD, Topley N, Alobaidi HM, Harber MJ: Activation of human polymorphonuclear leucocytes by particulate zymosan is related to both its major carbohydrate components: Glucan and mannan. Immunology 58: 117–125, 1986

    Google Scholar 

  49. Yamaguchi M, Oishi H, Araki S, Saeki S, Yamanae H, Okamura N, Ishibashi S: Respiratory burst and tyrosine phosphorylation by vanadate. Arch Biochem Biophys 323: 328–386, 1995

    Google Scholar 

  50. Jun PZ, Yuan C, Mei Z, Wan J: The effect of polysaccharide krestin on nitric oxide production in mouse peritoneal macrophages. Med Sci Res 27: 299–302, 1999

    Google Scholar 

  51. Deuk H-M, Sook LE, Kweon KY, Woo J, Hoon J, Há YK: Production of nitric oxide in raw 264.7 macrophages treated with ganoderan, the beta-glucan of Gonoderma lucidum. Korean J Mycol 26: 246–255, 1998

    Google Scholar 

  52. Kim S-W: Nitric oxide production ability and its formation mechanisms in macrophages TIB 71 cell line by polysaccharide extracted from Gonoderma lucidum. J Korean Soc Food Sci Nutrition 27: 333–337, 1998

    Google Scholar 

  53. Tsiapali E, Whaley S, Kalbfleisch J, Ensley HE, Browder WI, Williams DL: Glucans exhibit weak antioxidant activity, but stimulate macrophages free radical activity. Free Rad Biol Med 30: 393–402, 2001

    Google Scholar 

  54. Ding AH, Nathan CF, Stuehr DJ: Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J Immunol 141: 2407–2412, 1988

    Google Scholar 

  55. Iyengar R, Stuehr DJ, Marletta MA: Macrophages synthesis of nitrite, nitrate and N-nitrosamines: Precursors and role of the respiratory burst. Proc Natl Acad Sci 84: 6369–6373, 1987

    Google Scholar 

  56. Murray HW: Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages. J Exp Med 153: 1302–1315, 1981

    Google Scholar 

  57. Buchmüller-Rouiller Y, Maüel J: Impairment of the oxidative metabolism of mouse peritoneal macrophages by intracellular Leishmania ssp. Infect Immun 55: 587–593, 1987

    Google Scholar 

  58. Buchmüller-Rouiller Y, Corradin SB, Smith J, Mauël J: Effect of increasing intravesicular pH on nitrite production and leishmanicidal activity of activated macrophages. Biochem J 301: 243–247, 1994

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noleto, G.R., Mercê, A.L.R., Iacomini, M. et al. Effects of a lichen galactomannan and its vanadyl (IV) complex on peritoneal macrophages and leishmanicidal activity. Mol Cell Biochem 233, 73–83 (2002). https://doi.org/10.1023/A:1015566312032

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015566312032

Navigation