Skip to main content
Log in

Cation Segregation in an Oxide Ceramic with Low Solubility: Yttrium Doped α-Alumina

  • Published:
Interface Science

Abstract

The segregation behaviour of a cation (yttrium) with a low solubility in the polycrystalline oxide host (α-Al2O3) has been investigated at temperatures between 1450 and 1650°C using analytical scanning transmission electron microscopy. Three distinct segregation regimes were identified. In the first, the yttrium adsorbs to all grain boundaries with a high partitioning coefficient, and this can be modelled using a simple McLean-Langmuir type absorption isotherm. In the second, a noticeable deviation from this isotherm is observed and the grain boundary excess reaches a maximum of 9 Y-cat/nm2 and precipitates of a second phase (yttrium aluminate garnet, YAG) start to form. In the third regime, the grain boundary excess of the cation settles down to a value of 6–7 Y-cat/nm2 that is in equilibrium with the YAG precipitates. In a material (accidentally) co-doped with Zr, the Zr seems to behave in a similar way to the Y and the Y + Zr grain boundary excess behaves in the same way as the Y grain boundary excess in the pure Y-doped system. In this latter system, Y-stabilised cubic zirconia is precipitated in addition to YAG at higher Y + Zr concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Kaplan, H. Müllejans, M. Rühle, J. Rödel, and N. Claussen, J. Am. Ceram. Soc. 78, 2841 (1995).

    Google Scholar 

  2. M.A. Gülgün and M. Rühle, in Creep and Fracture of Engineering Materials and Structures, edited by T. Sakuma and K. Yagi, Key Engineering Materials,Vol. 171-174 (Transtec Publications Ltd., uetikon-Zurich, Switzerland, 2000), p. 793.

    Google Scholar 

  3. F. Tang, S. Nakazawa, and M. Hagiwara, Mater. Sci. Eng.A315, 147 (2001).

    Google Scholar 

  4. I.J. Bae and S.I. Baik, J. Am. Ceram. Soc. 80, 1146 (1997).

    Google Scholar 

  5. D.A. Molodov, U. Czubayko, G. Gottstein, L.S. Shvindlerman, B. Straumal, and W. Gust, Phil. Mag. Lett. 72, 361 (1995).

    Google Scholar 

  6. P.-L. Chen and I.-W. Chen, J. Am. Ceram. Soc. 79, 1793 (1996).

    Google Scholar 

  7. M. Aoki, Y.M. Chiang, I. Kosacki, I.J.R. Lee, H. Tuller, and Y.P. Liu, J. Am. Ceram. Soc. 79, 1169 (1996).

    Google Scholar 

  8. P. Lejcek, S. Hofmann, and A. Krajnikov, Mater. Sci. Eng. A 234, 283 (1997).

    Google Scholar 

  9. S. Lartigue, L. Priester, F. Dupau, P. Gruffel, and C. Carry,Mater.Sci. Eng. A164, 211 (1993).

    Google Scholar 

  10. M.A. Ashworth and M.H. Jacobs, Mater. Sci. Tech. 15, 951 (1999).

    Google Scholar 

  11. S. Subramanian, D.A. Muller, P.E. Batson, J. Silcox, and S.L. Sass, Mater. Sci. Eng. A 193, 936 (1995).

    Google Scholar 

  12. G.C. Wei, in Proc. 10th High-Temperature Materials Chemistry Conference, edited by K. Hilpert, F.W. Froben, and L. Singheiser (Jülich, Germany, 2000), p. 283.

    Google Scholar 

  13. M.P. Seah and E.D. Hondros, Proc. Roy. Soc. Lond. A 335, 191 (1973).

    Google Scholar 

  14. P. Lejcek and S. Hofmann, Critical Reviews in Solid State and Materials Sciences 20, 1 (1995).

    Google Scholar 

  15. N.Y. Jin-Phillipp, W. Sigle, A. Black, D. Babic, J.E. Bowers, E.L. Hu, and M. Rühle, J. Appl. Phys. 89, 1017 (2001).

    Google Scholar 

  16. S.C. Hansen and D.S. Phillips, Philos. Mag. A 47, 209 (1983).

    Google Scholar 

  17. J.R. Lee, Y.M. Chiang, and G. Ceder, Acta Mater. 45, 1247 (1997).

    Google Scholar 

  18. H. Gu, X.Q. Pan, R.M. Cannon, and M. Rühle, J. Am. Ceram.Soc. 81, 3125 (1998).

    Google Scholar 

  19. H. Müllejans, W.D. Kaplan, and M. Rühle, Mater. Sci. Forum. 207, 405 (1996).

    Google Scholar 

  20. K.L. Gavrilov, S.J. Bennison, K.R. Mikeska, and R. Levi-Setti, Acta Mater. 47, 4031 (1999).

    Google Scholar 

  21. K.L. Gavrilov, S.J. Bennison, K.R. Mikeska, J.M. Chabala, and R. Levi-Setti, J. Am. Ceram. Soc. 82, 1001 (1999).

    Google Scholar 

  22. R. Brydson, P.C. Twigg, F. Loughran, and F.L. Riley, J. Mater.Res. 16, 652 (2001).

    Google Scholar 

  23. R. Brydson, S.C. Chen, F.L. Riley, S.J. Milne, X.Q. Pan, and M. Rühle, J. Am. Ceram. Soc. 81, 369 (1998).

    Google Scholar 

  24. C.A. Handwerker, P.A. Morris, and R.L. Coble, J. Am. Ceram.Soc. 72, 130 (1989).

    Google Scholar 

  25. P. Gruffel and C. Carry, J. Eur. Ceram. Soc. 11, 189 (1993).

    Google Scholar 

  26. S.K. Roy and R.L. Coble, J. Am. Ceram. Soc. 51, 1 (1968).

    Google Scholar 

  27. J.D. Cawley and J.W. Halloran, J. Am. Ceram. Soc. 69, C195 (1996).

    Google Scholar 

  28. C.M. Wang, G.S. Cargill, H.M. Chan, and M.P. Harmer, Acta Mater. 48, 2579 (2000).

    Google Scholar 

  29. K. Gavrilov, S.J. Bennison, K.R. Mikeska, J. Chabala, and R. Levi-Setti, J. Am. Ceram. Soc. 80, 1146 (1997).

    Google Scholar 

  30. J. Bruley, J. Cho, H.M. Chan, M.P. Harmer, and J.M. Rickman, J. Am. Ceram. Soc. 82, 2865 (1999).

    Google Scholar 

  31. P. Gruffel and C. Carry, J. Eur. Ceram. Soc. 11, 189 (1993).

    Google Scholar 

  32. R.L. Coble, Transparent alumina and method of preparation, u.S. Patent 3 026 210, March 1962.

  33. J.H. Cho, M.P. Harmer, H.M. Chan, J.M. Rickman, and A.M. Thompson, J. Am. Ceram. Soc. 80, 1013 (1997).

    Google Scholar 

  34. J. Cho, C.M. Wang, H.M. Chan, J.M. Rickman, and M.P. Harmer, Acta Mater. 47, 4197 (1999).

    Google Scholar 

  35. H. Yoshida, Y. Ikuhara, and T. Sakuma, J. Mater. Res. 13, 2597 (1998).

    Google Scholar 

  36. H. Yoshida, Y. Ikuhara, and T. Sakuma, Philos. Mag. Lett. 79, 249 (1999).

    Google Scholar 

  37. H. Yoshida, Y. Ikuhara, and T. Sakuma, J. Mater. Res. 16, 716 (2001).

    Google Scholar 

  38. Y.Z. Li, C.M. Wang, H.M. Chan, J.M. Rickman, M.P. Harmer, J.M. Chabala, K.L. Gavrilov, and R. Levi-Setti, J. Am. Ceram.Soc. 82, 1497 (1999).

    Google Scholar 

  39. H. Yoshida, Y. Ikuhara, and T. Sakuma, in Creep and Fracture of Engineering Materials and Structures, edited by T. Sakuma and K. Yagi,Key Engineering Materials,Vol. 171-174 (Transtec Publications Ltd., uetikon-Zurich, Switzerland, 2000), p. 809.

    Google Scholar 

  40. L. Priester, F. Dupau, S. Lartigue-Korinek, and C. Carry, in Interface Science and Materials Interconnection, Proceedings of JIMIS-8 (The Japan Institute of Metals, Sendai, Japan, 1996), p.134.

    Google Scholar 

  41. M. Gülgün, V. Putlayev, and M. Rühle, J. Am. Ceram. Soc. 82, 1849 (1999).

    Google Scholar 

  42. R.M. Cannon, W.H. Rhodes, and A.H. Heuer, J. Am. Ceram.Soc. 63, 46 (1980).

    Google Scholar 

  43. A.H. Heuer, N.J. Tighe, and R.M. Cannon, J. Am. Ceram. Soc. 63, 53 (1980).

    Google Scholar 

  44. J.A.S. Ikeda, Y.M. Chiang, A.J. Garratt-Reed, and J.B. Vander Sande, J. Am. Ceram. Soc. 76, 2447 (1993).

    Google Scholar 

  45. S. Nufer, Ph.D. Thesis, university of Stuttgart, Stuttgart, Germany 2001, p. 55.

  46. U. Alber, H. Müllejans, and M. Rühle, ultramicroscopy 69, 105 (1997).

    Google Scholar 

  47. R.F. Egerton, in 50th Ann. Proc. Electron Microsc. Soc. Amer. (San Francisco Press, San Francisco, 1992), p. 1264.

    Google Scholar 

  48. J. Mayer, U. Eigenthaler, J.M. Plitzko, and F. Dettenwanger, Micron 28, 361 (1997).

    Google Scholar 

  49. C.J. Howorth, W.E. Lee, W.M. Rainforth, and P.F. Messer, Br. Ceram. Trans. J. 90, 18 (1991).

    Google Scholar 

  50. Toyo Soda Mfg. Co. Ltd., Tokyo, Japan.

  51. R. Voytovych, M. Gülgün, I. MacLaren, R. Cannon, and M. Rühle, Acta Mater., (2002) in press.

  52. C. Pascual and P. Duran, J. Am. Ceram. Soc. 66, 23 (1983).

    Google Scholar 

  53. W.D. Tuohig and T.Y. Tien, J. Am. Ceram. Soc. 63, 595 (1980).

    Google Scholar 

  54. L.M. Lopato, L.V. Nazarenko, G.I. Gerasimyuk, and A.V. Shevchenko, Izv. Akad. Nauk SSSR Neorg. Mater. 26, 834 (1990) (in Russian); Inorg. Mater. 26, 701 (1990) (Engl. Transl.).

    Google Scholar 

  55. D. McLean, Grain Boundaries in Metals (Clarendon Press, Oxford, uK, 1957).

    Google Scholar 

  56. S. Fabris and C. Elsässer, in preparation.

  57. C.R. Koripella and F.A. Kröger, J. Am. Ceram. Soc. 69, C195 (1986).

    Google Scholar 

  58. A.M. Thompson, K.K. Soni, H.M. Chan, M.P. Harmer, D.B. Williams, J.M. Chabala, and R. Levi-Setti, J. Am. Ceram. Soc.80, 373 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gülgün, M., Voytovych, R., Maclaren, I. et al. Cation Segregation in an Oxide Ceramic with Low Solubility: Yttrium Doped α-Alumina. Interface Science 10, 99–110 (2002). https://doi.org/10.1023/A:1015268232315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015268232315

Navigation