Skip to main content
Log in

Effect of Doping on Helium Behavior and Bubble Structure Development in Nickel and Vanadium Alloys

  • Published:
Atomic Energy Aims and scope

Abstract

Transmission electron microscopy and thermal desorption spectrometry are used to study the behavior of ion-implanted helium and formation of a gas bubble structure in fcc and bcc metals as a function of the concentration of the alloying elements (aluminum in nickel and titanium in vanadium). It is shown that during post-radiation annealing of room-temperature irradiated samples alloying in both types of alloys substantially decreases the size and increases the density of the bubbles formed. In nickel–aluminum alloys, with post-radiation uniform heating, the thermal desorption peaks shift to high temperature with increasing aluminum content and, conversely, in vanadium–titanium alloys a shift to low temperature with increasing titanium concentration occurs, though the effective gas release activation energy increases in both alloys with increasing concentration of the alloying element. The data obtained are discussed from the standpoint of the influence of doping on the mechanisms of growth and migration of bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. M. Beskorovainyi, B. A. Kalin, P. A. Platonov, and I. I. Chernov, Structural Materials of Nuclear Reactors, Énergoatomizdat, Moscow (1995).

    Google Scholar 

  2. V. F. Zelenskii, I. M. Neklyudov, and T. P. Chernyaeva, Radiation Defects and Swelling of Metals, Naukova Dumka, Kiev (1988).

    Google Scholar 

  3. A. G. Zaluzhnyi, Yu. N. Sokurskii, and V. N. Tebus, Helium in Reactor Materials, Énergoatomizdat, Moscow (1988).

    Google Scholar 

  4. D. Reed, “A review of recent theoretical developments in the understanding of the migration of helium in metals and its interaction with lattice defects,” Rad. Eff., 31, 129–147 (1977).

    Google Scholar 

  5. S. Donnelly, “The density and pressure of helium in bubbles in implanted metals: a critical review,” ibid., 90, 1–47 (1985).

    Google Scholar 

  6. B. Singh and H. Trinkaus, “An analysis of the bubble formation behavior under different experimental conditions,” J. Nucl. Mater., 186, 153–165 (1992).

    Google Scholar 

  7. V. N. Chernikov, H. Trinkaus, P. Jung, and H. Ullmaier, “The formation of helium bubbles near the surface and in the bulk in nickel during post-implantation annealing,” ibid., 170, 30–31 (1990).

    Google Scholar 

  8. V. F. Zelenskij, I. M. Nekludov, V. V. Ruzhitskij, et al., “Thermal desorption of helium from polycrystalline Ni irradiated to fluences ranging from 1·1017 to 1·1018 He+/cm2,” ibid., 151, 22–26 (1987).

    Google Scholar 

  9. B. A. Kalin, I. I. Chernov, A. N. Kalashnikov, and M. N. Esaulov, “Characteristic features of the interaction of implanted helium with interstitial and substitution elements in nickel and iron,” Vopr. At. Nauk. Tekh., Ser. Fiz. Radiats. Povrezhden. Radiats. Materialoved., No. 1 (65), 2 (66), 53–79 (1997).

  10. I. I. Chernov, B. A. Kalin, A. N. Kalashnikov, and V. M. Ananin, “Behavior of ion-implanted helium and structural changes in nickel-base alloys under long-time exposure at elevated temperatures,” J. Nucl. Mater., 271- 272, 333–339 (1999).

    Google Scholar 

  11. A. Czyrska-Filemonowicz and W. Kesternich, “Helium bubble formation in model nickel-based alloys,” ibid., 137, 33–43 (1985).

    Google Scholar 

  12. K. Ono, M. Inoue, T. Kino, et al., “Formation, coalescence, and stability of helium bubbles in high purity aluminum and some dilute alloys,” ibid., 133- 134, 477–481 (1985).

    Google Scholar 

  13. O. M. Barabash and Yu. N. Koval', Handbook on the Structure and Properties of Metals and Alloys. Crystal Structure of Metals and Alloys, Naukova Dumka, Kiev (1986).

    Google Scholar 

  14. B. A. Kalin and I. I. Chernov, “Ordered structures of pores and bubbles in irradiated metals and alloys,” At. Tekh. Rubezh., No. 10, 3–9 (1986).

  15. P. Jung, M. I. Ansari, H. Klein, and D. Meertens, “Diffusion and γ′precipitation in Ni(Al) alloys under proton irradiation,” J. Nucl. Mater., 148, 148–156 (1987).

    Google Scholar 

  16. L. N. Larikov and V. I. Isaichev, Handbook on the Structure and Properties of Metals and Alloys. Diffusion in Metals and Alloys, Naukova Dumka, Kiev (1987).

    Google Scholar 

  17. J. F. Mirdock and C. J. McHargue, “Self-diffusion in body-centered cubic titanium- vanadium alloys,” Acta Met., 16, 493–500 (1968).

    Google Scholar 

  18. R. F. Piirt, “Self-diffusion of vanadium,” in: Diffusion in Metals with a Body-Center Lattice, Metallurgiya, Moscow (1969), pp. 244–253.

    Google Scholar 

  19. G. B. Fedorov, E. A. Smirnov, F. I. Zhomov, and N. I. Ivanov, “Self-diffusion and diffusion of impurities in vanadium,” in: Materials of Atomic Technology, Atomizdat, Moscow (1975), No. 1, pp. 19–25.

    Google Scholar 

  20. J. Pelleg, “Diffusion in the vanadium system,” Phil. Mag., 36, No. 3, 525–532 (1977).

    Google Scholar 

  21. M.-P. Macht, G. Frohberg, and H. Wever, Z. Metallk, 70, No. 4, 209–214 (1979).

    Google Scholar 

  22. D. Ablitzer, J. Haeussler, and K. Sathyarai, “Vanadium self-diffusion in pure vanadium and in dilute vanadium-iron and vanadium- tantalum alloys,” Phil Mag. A, 47, No. 4, 515–528 (1983).

    Google Scholar 

  23. G. Walker, “The migration of helium bubbles in a 20%Cr/25%Ni/Nb stabilized steel,” J. Nucl. Mater., 37, No. 2, 171–176 (1970).

    Google Scholar 

  24. S. Tyler and P. Goodhew, “Direct evidence for the Brownian motion of helium bubbles,” ibid., 92, No. 2- 3, 201–206 (1980).

    Google Scholar 

  25. S. Furuno, K. Hojou, K. Izui, et al., “Dynamic behavior of bubbles and blisters of aluminum during helium ion irradiation in an electron microscope,” ibid., 155- 157, 1149–1153 (1988).

    Google Scholar 

  26. G. A. Artyunova, Yu. N. Sokurskii, and V. I. Chuev, “Effect of irradiation by helium ions on the structure of 1Kh13M2BFR ferrite steel and iron,” in: Structural Materials for Thermonuclear Fusion Reactors, Nauka, Moscow (1988), 120–130.

    Google Scholar 

  27. V. S. Karasev and V. G. Kovyrshin, “Thermal desorption of implanted helium from austenitic 16- 15 steels,” At. Énerg., 55, No. 6, 362–370 (1983).

    Google Scholar 

  28. K. P. Gurov, E. A. Smirnov, and A. N. Shabalin, Diffusion and Kinetics of Phase Transformations in Metals and Alloys, Moscow Engineering Physics Institute, Moscow (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalin, B.A., Chernov, I.I., Kalashnikov, A.N. et al. Effect of Doping on Helium Behavior and Bubble Structure Development in Nickel and Vanadium Alloys. Atomic Energy 92, 50–56 (2002). https://doi.org/10.1023/A:1015187013619

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015187013619

Keywords

Navigation