Skip to main content
Log in

Shear Stress in a Couette Flow of Liquid-Particle Suspensions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The mechanisms of momentum transfer and shear stress of liquid-particle suspensions in two-dimensional Couette flow are studied using direct numerical simulation by lattice-Boltzmann techniques. The results obtained display complex flow phenomena that arise from the two-phase nature of the fluid including a nonlinear velocity profile, layering of particles, and apparent slip near the solid walls. The general rheological behaviour of the suspension is dilatant. A detailed study of the various momentum transfer mechanisms that contribute to the total shear stress indicates that the observed shear thickening is related to enhanced relative solid phase stress for increasing shear rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. F. Brady, The rheological behaviour of concentrated colloidal dispersions, J. Chem. Phys. 99:567 (1993).

    Google Scholar 

  2. T. N. Phung, J. F. Brady, and G. Bossis, Stokesian dynamics simulation of Brownian suspensions, J. Fluid Mech. 313:181 (1996).

    Google Scholar 

  3. R. W. Whorlow, Rheological Techniques, 2nd ed. (Ellis Horwood, Great Britain, 1992).

    Google Scholar 

  4. S. L. Soo, Multiphase Fluid Dynamics (Science Press, Beijing, 1990).

    Google Scholar 

  5. D. Qi, Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows, J. Fluid Mech. 385:41 (1999).

    Google Scholar 

  6. G. Segré and A. Silberberg, Behaviour of macroscopic rigid spheres in Poiseuille flow, Part 2, Experimental results and interpretation, J. Fluid Mech. 14:136 (1962).

    Google Scholar 

  7. G. P. Krishnan and D. T. Leighton, Inertial lift on a moving sphere in contact with a plane wall in a shear flow, Phys. Fluids 7:2538 (1995).

    Google Scholar 

  8. C. K. Aidun, Y. N. Lu, and E. J. Ding, Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid Mech. 373:287 (1998).

    Google Scholar 

  9. S. Chen and G. Doolen, Lattice-Boltzmann method for fluid flows, Ann. Rev. Fluid Mech. 30:329 (1998).

    Google Scholar 

  10. B. Chopard, P. O. Luthi, and J. F. Wagen, A Lattice-Boltzmann method for wave propagation in urban microcells, IEE Proc.-Microw. Antennas Propagation 144:251 (1997).

    Google Scholar 

  11. J. M. Buick, C. A. Greated, and D. M. Campbell, Lattice BGK simulation of sound waves, Europhys. Lett. 43:235 (1998).

    Google Scholar 

  12. X. W. Shan and G. Doolen, Diffusion in a multicomponent lattice-Boltzmann equation model, Phys. Rev. E 54:3614 (1996).

    Google Scholar 

  13. S. Succi and R. Benzi, Lattice-Boltzmann equation for quantum-mechanics, Physica D 69:327 (1993).

    Google Scholar 

  14. X. W. Shan and H. D. Chen, Lattice-Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47:1815 (1993).

    Google Scholar 

  15. A. J. Wagner and J. M. Yeomans, Spinodal decomposition in two-dimensional binary fluids, Int. J. Mod. Phys. C 9:1373 (1998).

    Google Scholar 

  16. E. Aharonov and D. H. Rothman, Non-Newtonian flow (through porous media): A lattice-Boltzmann method, Geophys. Res. Lett. 20:679 (1993).

    Google Scholar 

  17. F. J. Alexander, H. Chen, S. Chen, and G. D. Doolen, Lattice-Boltzmann model for compressible fluids, Phys. Rev. A 46:1967 (1992).

    Google Scholar 

  18. C. K. Aidun and Y. Lu, Lattice-Boltzmann simulation of solid particles suspended in a fluid, J. Statist. Phys. 81:49 (1995).

    Google Scholar 

  19. A. J. C. Ladd, Short-time motion of colloidal particles: Numerical simulation via a fluctuating lattice-Boltzmann equation, Phys. Rev. Lett. 70:1339 (1993).

    Google Scholar 

  20. H. Chen, S. Chen, and W. H. Matthaeus, Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A 45:R5339 (1992).

    Google Scholar 

  21. G. R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett. 61:2332 (1988).

    Google Scholar 

  22. Y. H. Qian, D. d'Humières, and P. Lallemand, Lattice BGK for Navier-Stokes equation, Europhys. Lett. 17:479 (1992).

    Google Scholar 

  23. O. Behrend, R. Harris, and P. B. Warren, Hydrodynamic behaviour of lattice-Boltzmann and lattice Bhatnagar-Gross-Krook models, Phys. Rev. E 50:4586 (1994).

    Google Scholar 

  24. A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271:285 (1994).

    Google Scholar 

  25. A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech. 271:311 (1994).

    Google Scholar 

  26. O. Behrend, Solid-fluid boundaries in particle suspension simulations via the lattice Boltzmann method, Phys. Rev. E 52:1164 (1995).

    Google Scholar 

  27. A. J. C. Ladd and R. Verberg, Lattice-Boltzmann simulations of particle-fluid suspensions, J. Statist. Phys. 104:1191 (2001).

    Google Scholar 

  28. P. Raiskinmäki, A. Shakib-Manesh, A. Koponen, A. Jäsberg, M. Kataja, and J. Timonen, Simulation of non-spherical particles suspended in a shear flow, Comp. Phys. Comm. 129:185 (2000).

    Google Scholar 

  29. A. J. C. Ladd, Sedimentation of homogeneous suspensions of non-Brownian spheres, Phys. Fluids 9:491 (1997).

    Google Scholar 

  30. D. I. Dratler, W. R. Schowalter, and R. L. Hoffman, Dynamic simulation of shear thickening in concentrated colloidal suspension, J. Fluid Mech. 353:1 (1997).

    Google Scholar 

  31. J. Feng, H. H. Hu, and D. D. Joseph, Direct simulation of initial-value problems for the motion of solid bodies in a Newtonian fluid. 1. Sedimentation, J. Fluid Mech. 261:95 (1994).

    Google Scholar 

  32. http://www.phys.jyu.fi/homepages/amir/test.html.

  33. L. D. Landau and E. M. Lifshitz, Theory of elasticity, 3rd ed. (Pergamon Press, 1986).

  34. Pigment coating and surface sizing of paper, Papermaking Science and Technology, Vol. 11, E. Lehtinen, ed. (Fapet Oy, Jyväskylä, Finland, 2000).

    Google Scholar 

  35. R. L. Hoffman, Explanations for the cause of shear thickening in concentrated colloidal suspensions, J. Rheol. 42:111 (1998).

    Google Scholar 

  36. I. M. Krieger and T. J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol. 3:137 (1959); I. M. Krieger, Rheology of monodisperse lattices, Adv. Colloid Interface Sci. 3:111 (1972).

    Google Scholar 

  37. J. C. van der Werff and C. G. de Kruif, Hard-sphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction and shear rate, J. Rheol. 33:421 (1989).

    Google Scholar 

  38. J. F. Brady and G. Bossis, The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation, J. Fluid Mech. 155:105 (1985).

    Google Scholar 

  39. C. Chang and R. L. Powell, Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles, J. Fluid Mech. 253:1 (1993).

    Google Scholar 

  40. W. J. Frith, P. d'Haene, R. Buscall, and J. Mewis, Shear thickening in model suspensions of sterically stabilized particles, J. Rheol. 40:531 (1996).

    Google Scholar 

  41. J. F. Brady and G. Bossis, Stokesian dynamics, Ann. Rev. Fluid Mech. 20:111 (1988).

    Google Scholar 

  42. P. Raiskinmäki et al., to be published.

  43. J. H. C. Luke, Decay of velocity fluctuations in a stably stratified suspension, Phys. Fluids. 12:1619 (2000).

    Google Scholar 

  44. L. Bergström, Shear thinning and shear thickening of concentrated ceramic suspensions, Coll. Surf. A 133:151 (1998).

    Google Scholar 

  45. B. van der Vorst, D. van den Ende, N. J. J. Aelmans, and J. Mellema, Shear viscosity of an ordering latex suspension, Phys. Rev. E 56:3119 (1997).

    Google Scholar 

  46. A. J. C. Ladd, M. E. Colvin, and D. Frenkel, Application of lattice-gas cellular automata to the Brownian motion of solids in suspension, Phys. Rev. Lett. 60:975 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shakib-Manesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakib-Manesh, A., Raiskinmäki, P., Koponen, A. et al. Shear Stress in a Couette Flow of Liquid-Particle Suspensions. Journal of Statistical Physics 107, 67–84 (2002). https://doi.org/10.1023/A:1014598201975

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014598201975

Navigation