Skip to main content
Log in

Ganzfeld ERG in zebrafish larvae

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

In developmental biology, zebrafish are widely used to study the impact of mutations. The fast pace of development allows for a definitive morphological evaluation of the phenotype usually 5 days post fertilization (dpf). At that age, a functional analysis is already feasible using electroretinographic (ERG) methods. Corneal Ganzfeld ERGs were recorded with a glass microelectrode in anaesthetized, dark-adapted larvae aged 5 dpf, using a platinum wire beneath a moist paper towel as reference. ERG protocols included flash, flicker, and ON/OFF stimuli, both under scotopic and photopic conditions. Repetitive, isoluminant stimuli were used to assess the dynamic effect of pharmacological agents on the ERG. Single flash, flicker, and ON/OFF responses had adequately matured at this point to be informative. Typical signs of the cone dominance were the small scotopic a-wave and the large OFF responses. The analysis of consecutive single traces was possible because of the lack of EKG, breathing, and blink artefacts. After application of APB, which selectively blocks the ON channel via the mGluR6 receptor, the successive loss of the b-wave could be observed, which was quite different from the deterioration of the ERG after a circulatory arrest. The above techniques allowed to reliably obtain Ganzfeld ERGs in larvae aged 5 dpf. This underlines the important role of the zebrafish as a model for the functional analysis of mutations disrupting the visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 1996; 123: 37–46.

    Google Scholar 

  2. Haffter P, Granato M, Brand M, Mullins M C, Hammerschmidt M, Kane D A, Odenthal J, van Eeden F J, Jiang Y J, Heisenberg C P, Kelsh R N, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996; 123: 1–36.

    Google Scholar 

  3. Malicki J, Neuhauss SC, Schier AF, Solnica-Krezel L, Stemple DL, Stainier DY, Abdelilah S, Zwartkruis F, Rangini Z, Driever W. Mutations affecting development of the zebrafish retina. Development 1996; 123: 263–73.

    Google Scholar 

  4. Fadool JM, Brockerhoff SE, Hyatt GA, Dowling JE. Mutations affecting eye morphology in the developing zebrafish (Danio rerio). Dev Genet 1997; 20: 288–95.

    Google Scholar 

  5. Hisaoka KK, Battle HI. The normal developmental stages of the zebrafish, Brachydanio rerio (Hamilton-Buchanan). J Morphol 1958; 102: 311–23

    Google Scholar 

  6. Branchek T, Bremiller R. The development of photoreceptors in the zebrafish, Brachydanio rerio. I. Structure. J Comp Neurol 1984; 224: 107–15.

    Google Scholar 

  7. Kljavin IJ. Early development of photoreceptors in the ventral retina of the zebrafish embryo. J Comp Neurol 1987; 260: 461–71

    Google Scholar 

  8. Larison KD, Bremiller R. Early onset of phenotype and cell patterning in the embryonic zebrafish retina. Development 1990; 109: 567–76.

    Google Scholar 

  9. Schmitt EA, Dowling JE. Early eye morphogenesis in the zebrafish, Brachydanio rerio. J Comp Neurol 1994; 344: 532–42.

    Google Scholar 

  10. Schmitt EA, Dowling JE. Comparison of topographical patterns of ganglion and photoreceptor cell differentiation in the retina of the zebrafish, Danio rerio. J Comp Neurol 1996; 371: 222–34.

    Google Scholar 

  11. Schmitt EA, Dowling, JE. Early retinal development in the zebrafish, Danio rerio. Light and electron microscopic analyses. J Comp Neurol 1999; 404: 515–36.

    Google Scholar 

  12. Clark DT. Visual responses in the developing zebrafish (Brachydanio rerio). PhD thesis. University of Oregon Press, Eugene 1981.

    Google Scholar 

  13. Easter SS Jr, Nicola GN. The development of vision in the zebrafish (Danio rerio). Dev Biol 1996; 180: 646–63.

    Google Scholar 

  14. Easter SS Jr, Nicola GN. The development of the eye movements in the zebrafish (Danio rerio). Dev Psychobiol 1997; 31: 267–76.

    Google Scholar 

  15. Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE. A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci U.S.A. 1995; 92: 10545–9.

    Google Scholar 

  16. Neuhauss SCF, Biehlmeier O, Seeliger MW, Das T, Kohler K, Harris WA, Baier H. Genetic disorders of vision revealed by a behavioral screen of four-hundred essential loci in zebrafish. J Neurosci 1999; 19: 8603–15.

    Google Scholar 

  17. Fishman GA, Sokol S. Electrophysiologic Testing. American Academy of Ophthalmology, San Francisco, 1990.

    Google Scholar 

  18. Frishman LJ, Karwoski C. The d-Wave. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. Mosby-Year Book: St. Louis, 1991.

    Google Scholar 

  19. Saszik S, Bilotta J, Givin CM. ERG assessment of zebrafish retinal development. Vis Neurosci 1999; 16: 881–8.

    Google Scholar 

  20. Brockerhoff SE, Hurley JB, Niemi GA, Dowling JE. A new form of inherited redblindness identified in zebrafish. J Neurosci 1997; 17: 4236–42.

    Google Scholar 

  21. Li L, Dowling JE. A dominant form of inherited retinal degeneration caused by a nonphotoreceptor cell-specific mutation. Proc Natl Acad Sci USA 1997; 94: 11645–50.

    Google Scholar 

  22. Li L, Dowling JE. Effects of dopamine depletion on visual sensitivity of zebrafish. J Neurosci 2000; 20: 1893–1903.

    Google Scholar 

  23. Mullins MC, Hammerschmidt M, Haffter P, Nüsslein-Volhard C. Large-scale mutagenesis in the zebrafish: In search of genes controlling development in a vertebrate. Curr Biol 1994; 4: 189–202.

    Google Scholar 

  24. Sieving PA. Photopic ON-and OFF-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc 1993; 91: 701–73.

    Google Scholar 

  25. Seeliger MW, Neuhauss SCF, Kohler K, Zrenner E. Ganzfeld-Electroretinography in the zebrafish. Invest Ophthalmol Vis Sci [Suppl] 1998; 39: S975.

    Google Scholar 

  26. Saszik S, Bilotta J. The effects of temperature on the dark-adapted spectral sensitivity function of the adult zebrafish. Vision Res 1999; 39: 1051–8.

    Google Scholar 

  27. Biel M, Seeliger MW, Pfeifer A, Kohler K, Gerstner A, Ludwig A, Jaissle G, Fauser S, Zrenner E, Hofmann F. Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proc Natl Acad Sci USA 1999; 96: 7553–7.

    Google Scholar 

  28. Peachey NS, Alexander KR, Fishman GA. The luminance-response function of the darkadapted human electroretinogram. Vision Res 1989; 29: 263–70.

    Google Scholar 

  29. Vihtelic TS, Doro CJ, Hyde DR. Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins. Vis Neurosci 1999; 16: 571–85.

    Google Scholar 

  30. Raymond PA, Barthel LK, Curran GA. Developmental patterning of rod and cone photoreceptors in embryonic zebrafish. J Comp Neurol 1995; 359: 537–50.

    Google Scholar 

  31. Gum GG, Gelatt KN, Samuelson DA. Maturation of the retina of the canine neonate as determined by electroretinography and histology. Am J Vet Res 1984; 45: 1166–71.

    Google Scholar 

  32. Jacobson SG, Ikeda H, Ruddock K. Cone-mediated retinal function in cats during develop-ment. Doc Ophthalmol 1987; 65: 7–14.

    Google Scholar 

  33. Slaughter MM, Miller RF. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 1981; 211: 182–5.

    Google Scholar 

  34. Slaughter MM, Miller RF. Characterization of an extended glutamate receptor of the ON bi-polar neuron in the vertebrate retina. J Neurosci 1985; 5: 224–33.

    Google Scholar 

  35. Tian N, Slaughter MM. Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res 1995; 35: 1359–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seeliger, M.W., Rilk, A. & Neuhauss, S.C. Ganzfeld ERG in zebrafish larvae. Doc Ophthalmol 104, 57–68 (2002). https://doi.org/10.1023/A:1014454927931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014454927931

Navigation