Skip to main content
Log in

Understanding lipase stereoselectivity

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microorganisms or isolated enzymes can be applied as catalysts to create highly regio- and stereoselective conversions under mild conditions. Lipases (EC 3.1.1.3, triacylglycerol lipase) are lipid-hydrolysing enzymes, which are increasingly used in stereoselective reactions. Their industrial importance arises from the fact that they act on a variety of substrates promoting a broad range of biocatalytic reactions. Lipase stereoselectivity is exploited for the production of single enantiomers instead of racemic mixtures and will become more important in the pharmaceutical and agrochemical industry because, in most cases only one of the two enantiomers has the desired activity, whereas no activity or even undesirable side effects reside in the other enantiomer. Enantiomer differentiation is due to the various diastereomeric interactions that occur between the enantiomers and the active site of the enzyme. The stereospecificity of a lipase depends largely on the structure of the substrate, interaction at the active site and on the reaction conditions. Stereoselectivity involves a wide range of factors such as differentiation of enantiotopes, differentiation of enantiomers, type of substrate, biochemical interaction of the substrate with the enzyme, steric interaction of the substrates, competition between two different substrates, nature and availability of the active site for stereoselective action, presence of water and nature of solvents based on polarity and supercritical state. This article reviews factors responsible for lipase stereoselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuchowski, A., van Es, T., Palczuk, N.C. & Davis, F.F. 1977 Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry 252, 3578–3581.

    Google Scholar 

  • Ajima, A., Yoshimoto, T., Takahashi, K., Tamaura, Y., Saito, Y. & Inada, Y. 1985 Polymerization of 10-hydroxydecanoic acid in benzene with polyethylene glycol-modified lipase. Biotechnology Letters 7, 303–306.

    Google Scholar 

  • Alcantara, A.-R., Sanchez-Montero, J.-M. & Sinisterra, J.-V. 2000 Chemoenzymatic preparation of enantiomerically pure S(+)-2-arylpropionic acids with anti-inflammatory activity. In Stereoselective Biocatalysis, ed. Patel, R.N. pp. 659–702. New York: Dekker. ISBN 0-82478282-8.

    Google Scholar 

  • Alworth, W.L. 1972 The relation between substrate symmetry and biological stereospecificity. In Stereochemistry and its Application in Biology, pp. 312–343. Wiley-Interscience: New York. ISBN 0-471-02518-6.

    Google Scholar 

  • Azered, R. & Buisson, D. 2000 Dynamic resolution and stereoinversion of secondary alcohols by chemo-enzymatic processes. Current Opinions in Biotechnology 11, 565–571.

    Google Scholar 

  • Babaik, K.A., Ng, J.S., Dygos, J.H., Weyker, C.L., Wang, Y.-F. & Wong, C.-H. 1990 Lipase-catalyzed irreversible transesterification using enol esters: resolution of prostaglandin synthons 4-hydroxy-2-alkyl-2-cyclopentenones and inversion of the 4S enantiomer to the 4R enantiomer. Journal of Organic Chemistry 55, 3377–3382.

    Google Scholar 

  • Baldsessari, A., Bruttomesso, A.C. & Gros, E.G. 1996 Lipase catalyzed regioselective deacetylation of androstane derivatives. Helvetica Chimica Acta 79, 999–1004.

    Google Scholar 

  • Barne, Y., Martinez, C., Kerfelec, B., Lombardo, D., Chapus, C. & Cambillau, C. 1994 Horse pancreatic lipase. The crystal structure refined at 2.3 Å resolution. Journal of Molecular Biology 238, 709–732.

    Google Scholar 

  • Barzana, E., Karel, M. & Klibanov, A.M. 1989 Stereoselective bioconversions. Biotechnology and Bioengineering 34, 1178–1185.

    Google Scholar 

  • Berglund, P. & Hult, K. 2000 Biocatalytic synthesis of enantiopure compounds using lipases. In Stereoselective Biocatalysis, ed. Patel, R.N. pp. 633–657. New York: Marcel Dekker. ISBN 0-82478282-8.

    Google Scholar 

  • Borman, S. 1990 Production of optically active drugs using lipases. Chemical Engineering News 28, 9–14.

    Google Scholar 

  • Botta, M., Cernia, E., Corelli, E., Manetti, F. & Soro, S. 1997 Probing the substrate specificity for lipases. II. Kinetic and modeling studies on the molecular recognition of 2-arylpropionic esters by Candida rugosa and Rhizomucor miehei lipases. Biochimica et Biophysica Acta 1337, 302–310.

    Google Scholar 

  • Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B. & Norskov, L. 1990 A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343, 767–770.

    Google Scholar 

  • Brieva, R., Crich, J.Z. & Sih, C.J. 1993 Chemoenzymatic synthesis of the C-13 side chain of taxol: optically active 3-hydroxy-4-phenyl β-lactam derivatives. Journal of Organic Chemistry 58, 1068–1075.

    Google Scholar 

  • Brumlik, M.J. & Buckley, J.T. 1996 Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila. Journal of Bacteriology 178, 2060–2064.

    Google Scholar 

  • Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Björkling, F., Huge-Jensen, B., Patkar, S.A. & Thim, L. 1991 A model for interfacial activation in lipases from the structure of a fungal lipase–inhibitor complex. Nature 351, 491–497.

    Google Scholar 

  • Bucciarelli, M., Forni, A., Moretti, I., Prati, F. & Torre, G.J. 1993 Candida cylindracea lipase-catalysed hydrolysis of methyl aziridine-2-carboxylates and 2,3-dicarboxylates. Chemical Society Perkin Transactions, Vol. no. 113, 3041–3045.

    Google Scholar 

  • Bundgaard, H. 1985 Pharmacology of prodrugs. In Design of Prodrugs, ed. Bundgaard, H. pp. 1–92. Amsterdam: Elsevier. ISBN 0-44480675-X.

    Google Scholar 

  • Burgess, K. & Jennings, L.D. 1991 Hydrolysis of lipids. Journal of the American Chemical Society 113, 6129–6139.

    Google Scholar 

  • Capewell, A., Wendel, V., Bornscheuer, U., Meyer., H.H. & Scheper, T. 1996 Lipase-catalyzed kinetic resolution of 3-hydroxy esters in organic solvents and supercritical carbon dioxide. Enzyme and Microbial Technology 19, 81–186.

    Google Scholar 

  • Cernia, E., Palocci, C., Gasparrin, F., Misiti, D. & Fagano, N. 1994 Enantioselectivity and reactivity of immobilized lipase in super-critical carbon dioxide. Journal of Molecular Catalysis 89, 8.

    Google Scholar 

  • Chang, C.S. & Tsai, S.W. 1997 A facile enzymatic process for the preparation of (S)-naproxen ester prodrug in organic solvents. Enzyme and Microbial Technology 20, 635–639.

    Google Scholar 

  • Charlton, E., Davies, C., Sidebottom, C.M., Sutton, J.L., Dunn, P.P.J., Slabas A.R. & Macrae, A.R. 1991 Chiral aggregates and asymmetric induction of the reduction of prochiral ketones. Gesellschaft für Biotechnologische Forschung Monograph 16, 335–338.

    Google Scholar 

  • Chen, J.-C. & Tsai, S.-W. 2000 Enantioselective synthesis of (S)-ibuprofen ester prodrug in cyclohexane by Candida rugosa lipase immobilized on accurel MP1000. Biotechnology Progress 16, 986–992.

    Google Scholar 

  • Cipiciani, A., Fringuelli, F. & Scappini, A.M. 1996 Enzymatic hydrolysis of acetoxy-and phenethylbenzoates by Candida cylindracea lipase. Tetrahedron 52, 9869–9876.

    Google Scholar 

  • Commenil, P., Belingheri, L., Sancholle, M. & Dehorter, B. 1994 Purification and properties of an extracellular lipase from the fungus Botrytis cinerea. Lipids 30, 351–356.

    Google Scholar 

  • Conde, S., Fierros, M., Dorronsoro, I., Jimeno, M.L. & Rodriguez-Franco, M.I. 1997 Regioselective lipase catalyzed synthesis of diester crowns. New asymmetric macrocycles containing a l,3-bis(1H-pyrazol-l-yl)propane unit. Tetrahedron 53, 11,481–11,488.

    Google Scholar 

  • Cygler, M., Schrag, J.D. & Ergan, F. 1992 Advances in structural understanding of lipases. Biotechnology and Genetic Engineering Reviews 10, 143–184.

    Google Scholar 

  • Cygler, M., Grochulski, P., Kazlaukas, R.J., Schrag, J.D., Bouthiller, F., Rubin, B., Serreqi, A.N. & Gupta, A.K. 1994 Electronmicroscopic study of lipase structure. Journal of the American Chemical Society 116, 3180–3186.

    Google Scholar 

  • Davies, H.G., Green, R.H., Kelly, D.R. & Green, S.M. 1989 Biotransformations in Preparative Organic Chemistry. pp. 79–91. London: Academic Press. ISBN 0-12-206230-2.

    Google Scholar 

  • Derewenda, U., Brzozowski, A.M., Lawson, D.M. & Derewenda, Z.S. 1992a Catalysis at the interface: the anatomy of a conformational change in a triacylglycerols lipase. Biochemistry 31, 1532–1541.

    Google Scholar 

  • Derewenda, Z.S., Derewenda, U. & Dodson, G.G. 1992b The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. Journal of Molecular Biology 227, 818–839.

    Google Scholar 

  • Derewenda, U., Swenson, L., Green, R., Wei, Y., Yamaguchi, S., Joerger, R., Haas, M.J. & Derewenda, Z.S. 1994a Current progress in crystallographic studies of new lipases from lamentous fungi. Protein Engineering 7, 551–557.

    Google Scholar 

  • Derewenda, U., Swenson, L., Wei, Y., Green, R., Kobos, P.M., Joerger, R., Haas, M.J. & Derewenda, Z.S. 1994b Conformational liability of lipases observed in the absence of an oil–water intercrystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. Journal of Lipid Research 3, 524–534.

    Google Scholar 

  • Drozozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Huge-Jensen, B., Patkar, S.A. & Thim, L. 1991 A model for interfacial activation in lipases from the structure of a fungal lipase–inhibitor complex. Nature 351, 491–494.

    Google Scholar 

  • Dugi, K., Dicheck, H.L., Talley, G.D., Brewer, H.B. & Santamarina-Fojo, S. 1991 Human lipoprotein lipase: the loop covering the catalytic site is essential for interaction with lipid substrates. Journal of Biological Chemistry 267, 25,806–25,891.

    Google Scholar 

  • Egloff, M.P., Marguet, F., Buono, G., Verger, R., Cambillau, C. & van Tilbeurgh, H. 1995 The 2.46 Å resolution structure of the pancreatic lipase–colipase complex inhibited by a C11 alkyl phosphonate. Biochemistry 34, 2751–2762.

    Google Scholar 

  • Ergan, F., Trani, M. & Andre, G. 1991 Use of lipases in multiphase systems, solely composed of substrates. Journal of the American Chemical Society 68, 412–417.

    Google Scholar 

  • Fersht, A. 1985 Enzyme Structure and Mechanisms, 2nd edn. pp. 157–176. Freeman ISBN 0-71671615-1.

  • Furukawa, M., Kodera, Y., Uemura, T., Hiroto, M., Matsushima, A., Kuno, H., Matsushita, H. & Inada, Y. 1994 Alcoholysis of epsilon-decalactone with polyethylene glycol-modified lipase in 1,1,1-trichloroethane. Biochemical and Biophysical Research Communications 199, 41–45.

    Google Scholar 

  • Garcia, M., del Campo, C., Llama, E.F., Sanchez-Montero, J.M. & Sinisterra, V. 1993 Chemoenzymatic synthesis of pure enantiomeric 2-arylpropionic acids. Tetrahedron 49, 8433–8437.

    Google Scholar 

  • Garcia, M., Gradillas, A., del Campo, C., Llama, E.F., Sanchez-Montero, J.M. & Sinisterra, J.V. 1997 Hydrolysis of 2-substituted aryl and heteroaryl alkanoates by Candida rugosa lipase. Biotechnology Letters 19, 999–1004.

    Google Scholar 

  • Gardossi, L., Bianchi, D. & Klibanov, A.M. 1991 Lipase interactions and their behaviour. Journal of the American Chemical Society 113, 6328–6329.

    Google Scholar 

  • Gelo, M. & Sunjic, V. 1993 Lipase-catalyzed enantioselective hydrolysis of (±)-2-acetoxy-1-chloro-3-phthalimidopropane. Synthesis 43, 855–860.

    Google Scholar 

  • Ghosh, D., Erman, M. & Duax, W.L. 1991 Stereoselective steroid synthesis. Journal of Steroid Biochemistry and Molecular Biology 38, 663–665.

    Google Scholar 

  • Gjellesvik, D.R., Lorens, J.B. & Male, R. 1994 Pancreatic carboxylester lipase from Atlantic salmon (Salmo salar). cDNA sequence and computer-assisted modelling of tertiary structure. European Journal of Biochemistry 226, 603–612.

    Google Scholar 

  • Greten, H., Levy, R.I., Fales, H. & Fredrickson, D.S. 1970 Hydrolysis of diglyceride and glyceryl monoester diethers with 'lipoprotein lipase'. Biochimica et Biophysica Acta 210, 39–45.

    Google Scholar 

  • Grochulski, P., Bouthillier, F., Kazlauskas, R.J., Serreqi, A.N., Schrag, J.D., Ziomek, E. & Cygler, M. 1994a Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. Biochemistry 33, 3494–3500.

    Google Scholar 

  • Grochulski, P., Li, Y., Schrag, J.D. & Cygler, M. 1994b Two conformational states of Candida rugosa lipase. Protein Science 1, 82–91.

    Google Scholar 

  • Haeffiner, F., Norin, T. & Hult, K. 1998 Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions. Biophysical Journal 74, 1251–1262.

    Google Scholar 

  • Hartmann, T., Schwabe, E. & Scheper, T. 2000 Enzymatic reactions in supercritical carbon dioxide. In Stereoselective Biocatalysis, ed. Patel, R.N. pp. 799–838. New York: Dekker. ISBN 0-82478282-8.

    Google Scholar 

  • Hanson, R.L., Banerjee, A., Comezoglu, F.T., Mirfakhrae, D., Patel, R.N. & Szarka, L.J. 1994 Resolution of α-(4-fluorbiphenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazinebutanol(BMS 181100) and α-(3-chloropropyl)-4-fluorobenzenemethanol using lipase-catalyzed acetylation or hydrolysis. Tetrahedron Asymmetry 5, 1925–1934.

    Google Scholar 

  • Hasse, B. & Schneider, M.P. 1993 Enzyme assisted synthesis of enantiomerically pure δ-lactams. Tetrahedron Asymmetry 4, 1017–1021.

    Google Scholar 

  • Hjorth, A., Carriere, F., Cudrey, C., Woldike, H., Boel, E., Lawson, D.M., Ferrato, F., Cambillau, C., Dodson, G.G., Thim, L. & Veger, R. 1993 A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig phospholipase. Biochemistry 32, 4702–4707.

    Google Scholar 

  • Hughes, D.L., Bergan, J.J., Amato, J.S., Bhupathy, M., Leazer, J.L., McNamara, J.M., Sidler, D.R., Reider, P.J. & Grabowski, E.J. 1990 Lipase-catalyzed asymmetric hydrolysis of esters having remote chiral/prochiral centers. Journal of Organic Chemistry 55, 6252–6258.

    Google Scholar 

  • Ikushima, Y., Saito, N., Yokohama, T., Hatakeda, K., Ito, S., Arai, M. & Blanch, H.W. 1993 Solvent effects on an enzymatic ester synthesis in supercritical carbon dioxide. Chemistry Letters Vol. 75, 109–112.

    Google Scholar 

  • Itoh, T., Mitsukura, K., Kaihatsu, K., Hamada, H., Takagi, Y. & Tsukube, H. 1997 Remarkable acceleration of a lipase-catalyzed reaction by a thiocrown ether additive: buffer-free highly regioselective partial acid hydrolysis of 4-acetoxy-2-methylbut-2-enyl acetate. Journal of Chemical Society Perkin Transactions 1, 2275–2278.

    Google Scholar 

  • Jaeger, K.E., Ransac, S., Koch, H., Ferrato, F. & Dijkstra, B.W. 1993 Topological characterization and modeling of the 3D structure of lipase from Pseudomonas aeruginosa. FEBS Letters 332, 143–149.

    Google Scholar 

  • Jensen, R.G., Dejong, F.A. & Clark, R.M. 1983 Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids 18, 650–657.

    Google Scholar 

  • Kaiser, R., Erman, Duax, W.L., Ghosh, D. & Jornvall, H. 1994 Monomeric and dimeric forms of cholesterol esterase from Candida cylindracea. Primary structure, identity in peptide patterns, and additional microheterogeneity. FEBS Letters 337, 123–127.

    Google Scholar 

  • Kakeya, H., Sakai, N., Sugai, T. & Ohta, H. 1991 Preparation of optically active α-hydroxy acid derivatives by microbial hydrolysis of cyanohydrins and its application to the synthesis of (R)-4-dodecanolide. Agricultural and Biological Chemistry 55, 1877–1881.

    Google Scholar 

  • Kalaritis, P., Regenye, R.W., Partridge, J.J. & Coffen, D.L. 1990 Lipases in organic solvents. Journal of Organic Chemistry 55, 812–815.

    Google Scholar 

  • Kamat, S., Beckman, E.J. & Russel, A.J. 1995 Enzyme activity in supercritical fluids. CRC Critical Reviews in Biotechnology 15, 41–71.

    Google Scholar 

  • Kazlauskas, R.J., Weissfloch, A.N.E., Rappaport, A.T. & Cuccia, L.A. 1991 A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia and lipase from Candida rugosa. Journal of Organic Chemistry 56, 2656–2665.

    Google Scholar 

  • Kezic, S. 2000 Bioactivity and analysis of chiral compounds. Arh Hig Rada Toksikol 51, 335–341.

    Google Scholar 

  • Kikkawa, S., Takahashi, K., Katada, T. & Inada, Y. 1989 Esterification of chiral secondary alcohols with fatty acid in organic solvents by polyethylene glycol-modified lipase. Biochemistry International 19, 1125–1131.

    Google Scholar 

  • Kodera, Y., Hirito, M., Matsushima, A., Nishimura, H. & Inada, Y. 2000 Applications of PEG-modified enzymes in biotechnological processes. In Stereoselective Biocatalysis, ed. Patel, R.N. pp. 713–740. New York: Dekker. ISBN 0-82478282-8.

    Google Scholar 

  • Kodera, Y., Sakurai, K., Satoh, Y., Uemura, T., Kaneda., Y., Nishimura, H., Hiroto, M., Matsushima, A. & Inada, Y. 1998 Regioselective deacetylation of peracetylated monosaccharide derivatives by polyethylene glycol-modified lipase for the oligosaccharide synthesis. Biotechnology Letters 20, 177–180.

    Google Scholar 

  • Korn, E.D. 1971 Study of lipoprotein lipase hydrolytic behaviour. Journal of Lipid Research 3, 246–250.

    Google Scholar 

  • Labila, R. & Morin, C.J. 1984 Stereospecific construction of chiral β-lactams. Journal of Antibiotics 37, 1103–1107.

    Google Scholar 

  • Lay, L., Panza, L., Riva, S., Khitri, M. & Tirendi, S. 1996 Regioselective acylation of disaccharides by enzymatic transesterification. Carbohydrate Research 291, 197–204.

    Google Scholar 

  • Lang, D., Hofmann, B., Haalck, L., Hecht, H.J., Spener, F., Schmid, R.D. & Schomburg, D. 1996 Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 Å resolution. Journal of Molecular Biology 259, 704–717.

    Google Scholar 

  • Laane, C., Boeren, S., Vos, K. & Veeger, C. 1987 Structural basis for substrate specificity differences of horse liver alcohol dehydrogenase isozymes. Biotechnology and Bioengineering 30, 81–88.

    Google Scholar 

  • Lee, D., Huh, E.A., Jung, H.M., Koh, J.H. & Park, J. 2000 Dynamic kinetic resolution of allylic alcohols mediated by ruthenium-and lipase-based catalysts. Organic Letters 2, 2377–2379.

    Google Scholar 

  • Lesuisse, E., Schanck, K. & Colson, C. 1993 Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. European Journal of Biochemistry 216, 155–l60.

    Google Scholar 

  • Li, Z.-Y. & Ward, O.P. 1993a Enzyme catalysed production of vegetable oils containing w-3 PUFAs. Biotechnology Letters 15, 185–188.

    Google Scholar 

  • Li, Z.-Y. & Ward, O.P. 1993b Stability of microbial lipase in alcoholysis of fish oil. Biotechnology Letters 15, 393–398.

    Google Scholar 

  • Li, Z.-Y. & Ward, O.P. 1993c Lipase catalyzed alcoholysis to concentrate n-3 PUFAs of cod liver oil. Enzyme and Microbial Technology 15, 601–606.

    Google Scholar 

  • Li, Z.-Y. & Ward, O.P. 1993d Lipase esterification of glycerol and n-3 PUFA concentrate in organic solvent. Journal of the American Oil Chemists Society 70, 745–748.

    Google Scholar 

  • Li, Z.-Y. & Ward, O.P. 1994 Synthesis of monoglyceride containing ω-3 fatty acids by microbial lipase in organic solvent. Journal of Industrial Microbiology 13, 49–52.

    Google Scholar 

  • Li, Z.-Y. & Ward, O.P. 1996 Enzymatically solvent-free synthesis of sugar ester containing ω-3 polyunsaturated fatty acid. Chinese Chemical Letters 7, 611–614.

    Google Scholar 

  • Lopez-Belmonte, M.T., Alcantara, A-R. & Sinisterra, J.V. 1997 Enantioselective esterification of 2-arylpropionic acids catalyzed by immobilized Rhizomucor miehei lipase. Journal of Organic Chemistry 62, 1831–1840.

    Google Scholar 

  • Martinelle, M. & Hult, K. 1994 Lipases: Their Structure, Biochemistry and Application. ed. Woolley, P. & Petersen, S.B. pp. 159–180. London: Cambridge University Press. ISBN 0-521-44546-9.

    Google Scholar 

  • Martinelle, M. & Hult, K. 1995 Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B. Biochimica et Biophysica Acta 1251, 191–197.

    Google Scholar 

  • Martinelle, M., Holmquist, M. & Hult, K. 1995 On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochimica et Biophysica Acta 3, 272–276.

    Google Scholar 

  • Martinez, C., de Geus, P., Lauwereys, M., Matthyssens, G. & Cambillau, C. 1992 Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356, 615–618.

    Google Scholar 

  • Martins, J.F., Sampaio, T.C., Carvalho, I.B. & da Ponte, M.N. 1992 Lipase catalysed esterification of glycidol in chloroform and in supercritical carbon dioxide. High Pressure Biotechnology Vol. 93, 411–415.

    Google Scholar 

  • Marty, A., Condoret, J.S. & Combes, D. 1992 Fatty acid esterification in supercritical carbon dioxide. In Biocatalysis in Non-conventional Media, Vol. 8, ed. Tramper, et al. pp. 425–432. New York: Elsevier. ISBN 0-44489046-7.

    Google Scholar 

  • Matsumae, H., Furui, M. & Sabatani, T. 1993 Lipase-catalyzed asymmetric hydrolysis of 3-phenylglycidic acid ester, the key intermediate in the synthesis of diltiazem hydrochloride. Journal of Fermentation and Bioengineering 75, 93–98.

    Google Scholar 

  • Mejdoub, H., Reinbolt, J. & Gargoure, Y. 1994 Dromedary pancreatic lipase: purification and structural properties. Biochimica et Biophysica Acta 2, 119–126.

    Google Scholar 

  • Milton, R.A., Brand, S., Jones, M.F. & Rayner, C.M. 1995 Enantioselective enzymatic synthesis of the anti-viral agent lamivudine (3TC). Tetrahedron Letters 36, 6961–6964.

    Google Scholar 

  • Morley, N. & Kukis, A. 1972 Positional specificity of lipoprotein lipase. Journal of Biological Chemistry 247, 6389–6393.

    Google Scholar 

  • Morrison, R.T. & Boyd, R.N. 1966 Stereochemistry, pp. 216–233. Allyn and Bacon, Inc.

  • Morrone, R., Nicolosi, G., Patti, K. & Piattelli, M. 1995 Resolution of racemic flurbiprofen by lipase-mediated esterification in organic solvents. Tetrahedron Asymmetry 6, 1773–1778.

    Google Scholar 

  • Naemura, K., Fukuda, R., Murata, M., Konishi, M., Hirose, K. & Tobe, Y. 1995 Structural analysis of lipase structure. Tetrahedron Asymmetry 6, 2385.

    Google Scholar 

  • Naemura, K., Murata, M., Tanaka, R., Yano, M., Hirose, K. & Tobe, Y. 1996 Enantioselective acylation of alcohols catalyzed by lipase QL from Alcaligenes sp.: A predictive active site model for lipase QL to identify the faster reacting enantiomer of an alcohol in this acylation. Tetrahedron Asymmetry 7, 1581–1584.

    Google Scholar 

  • Nagao, T., Shimada, Y., Sugihara, A. & Tominaga, Y. 1994 Cloning and nucleotide sequence of cDNA encoding a lipase from Fusarium heterosporum. Journal of Biochemistry 116, 536–540.

    Google Scholar 

  • Nakamu, S., Yasudha, H., Watanabe, Y. & Toru, T. 2000 New asymmetric reactions. Journal of Organic Chemistry 65, 8640–8650.

    Google Scholar 

  • Nilsson-Ehle, P., Belfrage, P. & Borgstrom, B. 1971 Enzymatic hydrolysis of lipids. Biochimica et Biophysica Acta 248, 114–120.

    Google Scholar 

  • Niwayama, S., Kobayashi, S. & Ohno, M. 1994 A novel chemoenzymatic rearrangement by asymmetric hydrolysis with pig liver esterase. Journal of the American Chemical Society 116, 3290–3295.

    Google Scholar 

  • Njar, V.C.O. & Caspi, E. 1987 Enzymatic transesterification of steroid esters in organic solvents. Tetrahedron Letters 28, 6549–6552.

    Google Scholar 

  • Noble, M.E.M., Cleasby, A., Johnson, L.N., Egmond, M.R. & Frenken, L.G.J. 1993 The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Letters 7, 559–562.

    Google Scholar 

  • Orrenius, C., Norin, T., Hult, K. & Carrea, G. 1995a Lipase as chiral catalysts. Tetrahedron Asymmetry 6, 3023–3030.

    Google Scholar 

  • Orrenius, C., Ohrner, N., Rotticci, D., Mattson, A., Hult, K. & Norin, T. 1995b Candida antarctica lipase B catalyzed kinetic resolutions: substrate structure requirements for the preparation of enantiomerically enriched secondary alcanols. Tetrahedron Asymmetry 6, 1217–1220.

    Google Scholar 

  • Paltauf, F. 1971 Metabolism of the enantiomeric I-O-alkyl glycerol ethers in the rat intestinal mucosa in vivo; incorporation into I-O-alkyl and I-O-alk-I′-enyl glycerol lipids. Biochimica et Biophysica Acta 239, 38–46.

    Google Scholar 

  • Patel, R.N. 2000 Synthesis of chiral drug intermediates. In Stereoselective Biocatalysis, ed. Patel, R.N. pp. 87–130. New York: Dekker. ISBN 0-82478282-8.

    Google Scholar 

  • Patel, R.N., Howell, J.M., Banerjee, A., Fortney, K.F. & Szarka, L.J. 1991 Stereoselective enzymatic esterification of 3-benzoylthio-2-methylpropionic acid. Applied Microbiology and Biotechnology 36, 29–34.

    Google Scholar 

  • Patel, R.N., McNamee, C.G. & Szarka, L.J. 1992 Enantioselective enzymatic acetylation of racemic [4-[4α,6β(E)]]-6-[4,4-bis(4-fluorophenyl)-3-(l-methyl-1H-tetrazol-5-yl)-1,3-butadienyl]-tetrahydro-4-hydrozyl-2H-pyran-2-one. Applied Microbiology and Biotechnology 38, 56–60.

    Google Scholar 

  • Patel, R.N., Robinson, R.S. & Szarka, L.J. 1990 Stereoselective enzymatic hydrolysis of 2-cyclohexyl-and 2-phenyl-l,3-propanediol diacetate in biphasic systems. Applied Microbiology and Biotechnology 34, 10–14.

    Google Scholar 

  • Pathak, T. & Waldmann, H. 2000 Enzymatic protecting group techniques in organic synthesis. In Stereoselective Biocatalysis, ed. Patel, R.N. New York: Dekker. pp. 775–797. ISBN 0-82478282-8.

    Google Scholar 

  • Patkar, S.A. & Björkling, F. 1994 Lipases: Their Structure, Biochemistry and Application, ed. Woolley, P. and Petersen, S.B. pp. 207–224. London: Cambridge University Press. ISBN 0-521-44546-9.

    Google Scholar 

  • Persson, B.A., Larsson, A.L.E., LeRay, J.E. & Backvall, J.E. 1999 Ruthenium red enzyme-catalyzed dynamic kinetic resolution of secondary alcohols. Journal of the American Chemical Society 121, 1645–1650.

    Google Scholar 

  • Peterson, D.H. & Murray, H.C. 1952 Microbiological oxygenation of steroids at carbon 11. Journal of the American Chemical Society 74, 1871–1872.

    Google Scholar 

  • Pollak, A. & Whitesides, G.M. 1976 Organic synthesis using enzymes in two-phase aqueous ternary polymer systems. Journal of the American Chemical Society 98, 289–291.

    Google Scholar 

  • Quartey, E.G., Hustad, J.A., Faber, K. & Anthonsen, T. 1996 Selective enhancement of PPl-catalyzed resolution by enzyme fractionation and medium engineering: synthesis of both enantiomers of tetrahydropyran-2-methanol. Enzyme and Microbial Technology 19, 361–365.

    Google Scholar 

  • Ransac, S., Rogalska, E., Gargouri, Y., Deveer, A., Paltauf, F., Haas, G.H. & Verger, R. 1990 Stereoselectivity of lipases, I. Hydrolysis of enantiomeric glyceride analogues by gastric and pancreatic lipases, a kinetic study using the monomolecular film technique. Journal of Biological Chemistry 265, 20,263–20,270.

    Google Scholar 

  • Ransac, S., Blaauw, M., Dijkstra, B.W., Slotboom, A.T., Boots, J.W & Verheij, H.M. 1995 Crystallization and preliminary X-ray analysis of a lipase from Staphylococcus hyicus. Journal of Structural Biology 114, 153–155.

    Google Scholar 

  • Rantakyla, M. & Aaltonen, O. 1994 Enantioselective esterification of ibuprofen in supercritical carbon dioxide by immobilized lipase. Biotechnology Letters 16, 825–830.

    Google Scholar 

  • Rantakyla, M., Alkio, M. & Aaltonen, O. 1996 Stereospecific hydrolysis of 3-(4-methoxyphenyl)glycidic ester in supercritical carbon dioxide by immobilized lipase. Biotechnology Letters 18, 1089–1094.

    Google Scholar 

  • Redmann, I., Pina, M., Guyot, B., Blaise, P., Farines, M. & Graille, J. 1997 Chemoenzymatic synthesis of glucose fatty acid esters. Carbohydrate Research 300, 103–108.

    Google Scholar 

  • Riva, S. & Klibanov, A.M. 1988 Enzymochemical regioselective oxidation of steroids without oxidoreductases. Journal of the American Chemical Society 110, 3291–3295.

    Google Scholar 

  • Rogalska, E., Ransac, S. & Verger, R. 1990 Stereoselectivity of lipases. II. Stereoselective hydrolysis of triacylglycerols by gastric and pancreatic lipases. Journal of Biological Chemistry 265, 20,271–20,276.

    Google Scholar 

  • Rogalska, E., Cudrey, C., Ferrato, F. & Verger, R. 1993a Stereoselective hydrolysis of triacylglycerols by animal and microbial lipases. Chirality 5, 24–30.

    Google Scholar 

  • Rogalska, E., Ransac, S. & Verger, R. 1993b Controlling lipase Stereoselectivity via the surface pressure. Journal of Biological Chemistry 268, 792–794.

    Google Scholar 

  • Rogalska, E., Nury, S., Douchet, I. & Verger, R. 1995 Asymmetric synthesis of fatty acids. Chirality 7, 505–515.

    Google Scholar 

  • Rubin, B. 1994 Grease pit chemistry exposed. Nature Structural Biology 9, 568–572.

    Google Scholar 

  • Santaniello, E., Reza-Elahi, S. & Ferraboschi, P. 2000 Chiral synthons by enzymatic acylation and esterification reactions. In Stereoselective Biocatalysis, ed. Patel, R.N. pp. 415–460. New York: Dekker. ISBN 0-82478282-8.

    Google Scholar 

  • Sarda, L. & Desnuelle, P. 1958 Inhibition of lipases by proteins. A kinetic study with dicarpin monolayers. Biochimica et Biophysica Acta 30, 513–521.

    Google Scholar 

  • Schneider, M.P. 1986 Enzymes as Catalysis in Organic Synthesis. pp. 12–23. Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Schrag, J.D. & Cygler, M. 1993 A refined structure of the lipase from Geotrichum candidum. Journal of Molecular Biology 230, 575–591.

    Google Scholar 

  • Schrag, J.D. & Cygler, M. 1997 Lipases and α/β hydrolase fold. Methods in Enzymology 284, 85–107.

    Google Scholar 

  • Simonyi, M. 1984 Lipases in production of pure enantiomers. Medical Research Reviews 4, 359–413.

    Google Scholar 

  • Smeets, J.W.H. & Kieboom, A.P.G. 1992 Lipases in enantioselective synthesis. Recueil des Travaux Chimiques des Pays-Bas 111, 490–495.

    Google Scholar 

  • Strauss, U.T. & Faber, K. 1999a Deracemization of (±)-mandelic acid using a lipase-mandelate racemase two-enzyme system. Tetrahedron Asymmetry 10, 4079–4081.

    Google Scholar 

  • Strauss, U.T. & Faber, K. 1999b Biocatalytic transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomeric excess. Tetrahedron Asymmetry 10, 107–117.

    Google Scholar 

  • Strauss, U.T., Kandelbauer, A. & Faber, K. 2000 Stabilization and activity enhancement of mandelate racemase from Pseudomonas putida ATCC 12336 by immobilization. Biotechnology Letters 22, 515–520.

    Google Scholar 

  • Sugai, T., Okazaki, H., Kuboki, A. & Ohta, H. 1997 A chemoenzymatic synthesis of D-allosamine derivatives of tri-O-acetyl-D-glucal. Bulletin of the Chemical Society of Japan 70, 2535–2540.

    Google Scholar 

  • Theil, F., Schick., H., Winter, G. & Reck, G. 1991 Lipase-catalyzed transesterification of meso-cyclopentane diols. Tetrahedron 47, 7569–7574.

    Google Scholar 

  • Thirstup, K., Verger, R. & Carrière, F. 1994 Evidence for a pancreatic lipase subfamily with new kinetic properties. Biochemistry 33, 2748–2756.

    Google Scholar 

  • Tilbeurgh, H., Egloff, M.P., Martinez, C., Rugani, N., Verger, R. & Cambillau, C. 1993 Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362, 814–820.

    Google Scholar 

  • Toida, J., Kondoh, K., Fukuzawa, M., Ohnishi, K. & Sekiguchi, J. 1995 Purification and characterization of a lipase from Aspergillus oryzae. Bioscience Biotechnology and Biochemistry 59, 1199–1203.

    Google Scholar 

  • Tsai, S.-W., Lu, C.-C. & Chang, C.-S. 1996 Surfactant enhancement of (S)-naproxen ester productivity from racemic naproxen by lipase in isooctane. Biotechnology and Bioengineering 51, 148–156.

    Google Scholar 

  • Uemura, T., Furukawa, M., Kodera, Y., Hiroto, M., Matsushima, A., Kuno, H., Matsushita, H., Sakurai, K. & Inada, Y. 1995 Polyethylene glycol-modified lipase catalyzes asymmetric alcoholysis of δ-decalactone in N-decanol. Biotechnology Letters 17, 61–66.

    Google Scholar 

  • Uppenberg, J., Hansen, M.T., Patkar, S. & Jones, T.A. 1994a The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2, 293–308.

    Google Scholar 

  • Uppenberg, J., Patkar, S., Bergfors, T. & Jones, T.A. 1994b Crystallization and preliminary X-ray studies of lipase B from Candida antarctica. Journal of Molecular Biology 235, 790–792.

    Google Scholar 

  • Uyttenbroeck, W., Hendriks, D., Vriend, G., De Baere, L, Moens, L. & Scharpe, S. 1994 Biological activation of lipase molecule. Journal of Biological Chemistry 374, 245–254.

    Google Scholar 

  • Valivety, R.H., Hailing, P.J. & Macrae, A.R. 1992a Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents. Biochimica et Biophysica Acta 1118, 218–222.

    Google Scholar 

  • Valivety, R.H., Hailing, P.J., Peilow, A.D. & Macrae, A.R. 1992b Lipases from different sources vary widely in dependence of catalytic activity on water activity. Biochimica et Biophysica Acta 1122, 143–146.

    Google Scholar 

  • Van Tilbeurgh, H., Eglo., M.P., Martinez, C., Rugani, N., Verger, R. & Cambillau, C. 1993 Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362, 814–820.

    Google Scholar 

  • Verger 1997. Enantioselectivity of lipases. Nature 407, 786–793.

    Google Scholar 

  • Verger, R. & de Haas, G.H. 1973 Enzyme reactions in a membrane model. 1. A new technique to study enzyme reactions in monolayers. Chemistry and Physics of Lipids 10, 127–136.

    Google Scholar 

  • Ward, O.P. 1995 Microbial production of long-chain polyunsaturated fatty acids. Information 6, 683–688.

    Google Scholar 

  • Ward, O.P., Fang, J. & Li, Z.-Y. 1997 Lipase-catalyzed synthesis of sugar ester containing arachidonic acid. Enzyme and Microbial Technology 20, 52–56.

    Google Scholar 

  • Wieser, M. & Nagasawa, T. 2000 Stereoselective nitrile-converting enzymes. In Stereoselective Biocatalysis, ed. Patel, R.N. pp. 446–486. New York: Dekker. ISBN 0-82478282-8.

    Google Scholar 

  • Winkler, F.K., D'arcy, A. & Hunziker, W. 1992 Structure of human pancreatic lipase. Nature 345, 771–774.

    Google Scholar 

  • Yamane, T., Kojima, Y., Ichiruyu, T., Nagata, M. & Shimuzu, S. 1989 A highly stereoselective construction of β-glycosyl linkages by reductive cleavage of cyclic sugar ortho esters. Biotechnology and Bioengineering 34, 838–843.

    Google Scholar 

  • Yamane, T. 1998 Enymatic hydroxylation reactions. Biocatalysis 2, 1–9.

    Google Scholar 

  • Zaks, A. & Klibanov, A.M. 1985 Enzyme-catalyzed processes in organic solvents. Proceedings of the National Academy of Sciences of the USA 82, 3192–3196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muralidhar, R., Chirumamilla, R., Marchant, R. et al. Understanding lipase stereoselectivity. World Journal of Microbiology and Biotechnology 18, 81–97 (2002). https://doi.org/10.1023/A:1014417223956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014417223956

Navigation