Skip to main content
Log in

Recurrence, Dimensions, and Lyapunov Exponents

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that the Poincaré return time of a typical cylinder is at least its length. For one dimensional maps we express the Lyapunov exponent and dimension via return times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. Hirata, B. Saussol, and S. Vaienti, Statistics of return times: A general framework and new applications, Comm. Math. Phys. 206:3-55 (1999).

    Google Scholar 

  2. V. Afraimovich, Pesin's dimension for Poincaré recurrence, Chaos 7:12-20 (1997).

    Google Scholar 

  3. V. Penné, B. Saussol, and S. Vaienti, Dimensions for recurrence times: Topological and dynamical properties, Disc. Cont. Dyn. Sys. 4:783-798 (1998).

    Google Scholar 

  4. N. Haydn and S. Vaienti, The Limiting Distributions and Error Terms for Return Times of Dynamical Systems, preprint (2001).

  5. J. Cassaigne, P. Hubert, and S. Vaienti, in preparation.

  6. V. Afraimovich, J.-R. Chazottes, and B. Saussol, Pointwise Dimensions for Poincaré Recurrence Associated with Maps and Special Flows, preprint (2000).

  7. N. Haydn, J. Luevano, G. Mantica, and S. Vaienti, Multifracatal Properties of Return Time Statistics, submitted to Phys. Rev. Lett. (2001).

  8. F. Hofbauer, Local dimension for piecewise monotonic maps on the interval, Erg. Th. Dyn. Sys. 15:1119-1142 (1995).

    Google Scholar 

  9. L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys. 219:443-464 (2001).

    Google Scholar 

  10. L. Barreira and B. Saussol, Product Structure of Poincaré Recurrence, to appear in Erg. Th. Dyn. Sys.

  11. H. White, Algorithmic complexity of points in a dynamical system, Erg. Th. Dyn. Sys. 13:807-30 (1993).

    Google Scholar 

  12. H. White, On the Algorithmic Complexity of Trajectories of Points in Dynamical Systems, Ph.D. dissertation (University of North Carolina at Chapel Hill, 1991).

    Google Scholar 

  13. A. Brudno, Entropy and the complexity of the trajectories of a dynamical system, Russ. Math. Surv. 2:127-51 (1983) (Engl. Trans.).

    Google Scholar 

  14. T. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, 1995).

  15. F. Hofbauer and P. Raith, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull. 35:84-98 (1992).

    Google Scholar 

  16. F. Hofbauer, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map on the interval, in Lyapunov Exponents, Proceedings, Oberwolfach, 1990, L. Arnold, H. Crauel, and J.-P. Eckmann, eds., Lecture Notes in Mathematics, Vol. 1486 (Springer, Berlin, 1991), pp. 227-231.

    Google Scholar 

  17. D. Ornstein and B. Weiss, Entropy and data compression, IEEE Trans. Inf. Th. 39:78-83 (1993).

    Google Scholar 

  18. I. Kontoyiannis, P. Algoet, Yu. Suhov, and A. Wyner, Nonparametric entropy esitmation for stationary processes and random fileds, with applications to English text, IEEE Trans. Inf. Th. 44:1319-1327 (1998).

    Google Scholar 

  19. A. Quas, An entropy esitmator for a class of infinite alphabet processes, Theor. Veroyatnost. i Primenen. 43:61-621 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saussol, B., Troubetzkoy, S. & Vaienti, S. Recurrence, Dimensions, and Lyapunov Exponents. Journal of Statistical Physics 106, 623–634 (2002). https://doi.org/10.1023/A:1013710422755

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013710422755

Navigation