Skip to main content
Log in

Neural Coding with Graded Membrane Potential Changes and Spikes

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The neural encoding of sensory stimuli is usually investigated for spike responses, although many neurons are known to convey information by graded membrane potential changes. We compare by model simulations how well different dynamical stimuli can be discriminated on the basis of spiking or graded responses. Although a continuously varying membrane potential contains more information than binary spike trains, we find situations where different stimuli can be better discriminated on the basis of spike responses than on the basis of graded responses. Spikes can be superior to graded membrane potential fluctuations if spikes sharpen the temporal structure of neuronal responses by amplifying fast transients of the membrane potential. Such fast membrane potential changes can be induced deterministically by the stimulus or can be due to membrane potential noise that is influenced in its statistical properties by the stimulus. The graded response mode is superior for discrimination between stimuli on a fine time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson J, Lampl I, Reichova I, Carandini M, Ferster D (2000) Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nature Neurosci. 3(6):617-621.

    Google Scholar 

  • Azouz R, Gray C (2000) Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc. Natl. Acad. Sci. USA 97(14):8110-8115.

    Google Scholar 

  • Buračas G, Albright T (1999) Gauging sensory representation in the brain. Trends Neurosci. 22(7):303-309.

    Google Scholar 

  • Carr C, Friedmann M (1999) Evolution of time coding systems. Neural Comput. 11:1-20.

    Google Scholar 

  • Cecchi G, Sigman M, Alonso JM, Martinez L, Chialvo D, Magnasco M (2000) Noise in neurons is message-dependent. Proc. Natl. Acad. Sci. USA 97(10):5557-5561.

    Google Scholar 

  • Deco G, Schürmann B (1998) The coding of information by spiking neurons: An analytical study. Network: Comput. Neural Syst. 9:303-317.

    Google Scholar 

  • de Ruyter van Steveninck R, Laughlin S (1996) The rate of information transfer at graded-potential synapses. Nature 379:642-645.

    Google Scholar 

  • Egelhaaf M, Warzecha AK (1999) Encoding of motion in real time by the fly visual system. Curr. Opin. Neurobiol. 9:454-460.

    Google Scholar 

  • Gabbiani F, Koch C (1998) Principles of spike train analysis. In: Segev I, Koch C, eds. Methods in Neuronal Modeling (2nd ed.). MIT Press, Cambridge, MA, pp. 313-360.

    Google Scholar 

  • Geisler W, Albrecht D, Salvi R, Saunders S (1991) Discrimintion performance of single neurons: Rate and temporal-pattern information. J. Neurophysiol. 66(1):334-361.

    Google Scholar 

  • Haag J, Borst A (1996) Amplification of high-frequency synaptic inputs by active dendritic membrane processes. Nature 379:639-641.

    Google Scholar 

  • Haag J, Borst A (1997) Encoding of visual motion information and reliability in spiking and graded potential neurons. J. Neurosci. 17:4809-4819.

    Google Scholar 

  • Haag J, Borst A (1998) Active membrane properties and signal encoding in graded potential neurons. J. Neurosci. 18(19):7972-7986.

    Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges.: 49-70.

  • Hausen K (1984) The lobula-complex of the fly: Structure, function and significance in visual behaviour. In: Ali M, ed. Photoreception and Vision in Invertebrates. Plenum, New York, pp. 523-559.

    Google Scholar 

  • Hengstenberg R (1977) Spike responses of "non-spiking" visual interneurone. Nature 270:338-340.

    Google Scholar 

  • Jagadeesh B, Gray C, Ferster D (1992) Visually evoked oscillations of membrane potential in cells of cat visual cortex. Science 257:552-554.

    Google Scholar 

  • Johnston D, Wu SS (1995) Foundations of Cellular Neurophysiology. MIT Press, Cambridge, MA.

    Google Scholar 

  • Kretzberg J, Egelhaaf M, Warzecha AK (2001) Membrane potential fluctuations determine the precision of spike timing and synchronous activity: A model study. J. Computat. Neurosci. 10(1):79-97.

    Google Scholar 

  • Laughlin S (1989) Coding efficiency and design in visual processing. In: Stavenga D, Hardie R, eds. Facets of Vision. Springer, Berlin, pp. 213-234.

    Google Scholar 

  • Laughlin S, de Ruyter von Steveninck R, Anderson J (1998) The metabolic cost of neural information. Nature Neurosci. 1(1): 36-41.

    Google Scholar 

  • Machens C, Prinz P, Stemmler M, Ronacher B, Herz A (2001) Discrimination of behaviourally relevant signals by auditory receptor neurons. Neurocomput. 38-40:263-268.

    Google Scholar 

  • MacLeod K, Bäcker A, Laurent G (1998) Who reads temporal information contained across synchronized and oscillatory spike trains? Nature 395:693-698.

    Google Scholar 

  • Mainen Z, Sejnowski T (1995) Reliability of spike timing in neocortical neurons. Science 268:1503-1506.

    Google Scholar 

  • Marder E, Calabrese R (1996) Principles of rhythmic motor pattern generation. Physiolog. Rev. 76(3):687-717.

    Google Scholar 

  • Mechler F, Victor J, Purpura K, Shapley R (1998) Robust temporal coding of contrast by V1 neurons for transient but not for steady-state stimuli. J. Neurosci. 18(16):6583-6598.

    Google Scholar 

  • Morgans C (2000) Neurotransmitter release at ribbon synapses in the retina. Immunology and Cell Biology 78:442-446.

    Google Scholar 

  • Parker A, Newsome W (1998) Sense and the single neuron: Probing the physiology of perception. Annu. Rev. Neurosci. 21:227-277.

    Google Scholar 

  • Ratnam R, Nelson M (2000) Nonrenewal statistics of electrosensory afferent spike trains: Implications for the detection of weak sensory signals. J. Neurosci. 20(17):6672-6683.

    Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: Exploring the Neural Code. MIT Press, Cambridge, MA.

    Google Scholar 

  • Roberts A, Bush B (1981) Neurones Without Impulses. Cambridge University Press, Cambridge.

    Google Scholar 

  • Stern E, Kincaid A, Wilson C (1997) Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77:1697-1715.

    Google Scholar 

  • Stevens C, Zador A (1998) Input synchrony and the irregular firing of cortical neurons. Nature Neurosci. 1(3):210-217.

    Google Scholar 

  • van Rossum M (2001) A novel spike distance. Neural Comput. 13(4):751-763.

    Google Scholar 

  • Victor J, Purpura K (1996) Nature and precision of temporal coding in visual cortex: A metric-space analysis. J. Neurophysiol. 76(2):1310-1326.

    Google Scholar 

  • Victor J, Purpura K (1997) Metric-space analysis of spike trains: Theory, algorithms and application. Network: Comput. Neural. Syst. 8:127-164.

    Google Scholar 

  • Vogels R, Orban G (1990) How well do response changes of striate neurons signal differences in orientation? A study in the discriminating monkey. J. Neurosci. 10(11):3543-3558.

    Google Scholar 

  • Warzecha AK (1994) Realibility of neural information processing in the motion pathway of the blowflies Caliphora erythrocephala and Lucilia cuprina. Ph.D. thesis, Universität Tübingen.

  • Warzecha AK, Egelhaaf M (2001) Neuronal encoding of visual motion in real-time. In: Zanker J, Zeil J, eds. Motion Vision: Computational, Neural and Ecological Constraints. Springer, Berlin, pp. 239-277.

    Google Scholar 

  • Warzecha AK, Kretzberg J, Egelhaaf M (1998) Temporal precision of the encoding of motion information by visual interneurons. Curr. Biol. 8:359-368.

    Google Scholar 

  • Warzecha AK, Kretzberg J, Egelhaaf M (2000) Reliability of a fly motion sensitive neuron depends on stimulus parameters. J. Neurosci. 20(23):8886-8896.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretzberg, J., Warzecha, AK. & Egelhaaf, M. Neural Coding with Graded Membrane Potential Changes and Spikes. J Comput Neurosci 11, 153–164 (2001). https://doi.org/10.1023/A:1012845700075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012845700075

Navigation